Quiescent stem cells of glioblastoma (GBM), a malignant primary brain tumor, are potential sources for recurrence after therapy. However, the gene expression program underlying the physiology of GBM stem cells remains unclear. We have isolated quiescent GBM cells by engineering them with a knock-in H2B-GFP proliferation reporter and expanding them in a 3D tumor organoid model that mimics tumor heterogeneity. H2B-GFP label retaining quiescent cells were subjected to stem cell assays and RNA-Seq gene expression analysis. While quiescent GBM cells were similar in clonal culture assays to their proliferative counterparts, they displayed higher therapy resistance. Interestingly, quiescent GBM cells upregulated epithelial-mesenchymal transition (EMT) genes and genes of extracellular matrix components. Our findings connect quiescent GBM cells with an EMT-like shift, possibly explaining how GBM stem cells achieve high therapy resistance and invasiveness, and suggest new targets to abrogate GBM. Overall design: Glioblastoma cancer cells in 3D organoid culture were pulsed for 2 weeks with H2B-GFP, then chased either 2 or 4 weeks. Label-retaining GFP-high cells (quiescent) were separated from bulk population, and both populations were analyzed by RNA-Seq.
Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.
Specimen part, Subject
View SamplesStudying dynamic transcripts in single cells (SC) requires large numbers of timed samples. We report an easy to use protocol to stabilize RNA in intact SCs without perturbing transcriptional patterns, and demonstrate its applicability for SC transcriptome assays with cells and tissue. We identify a gene-specific hierarchical pattern of all-or-none transcript induction elicited by different concentrations of pulsatile hormone stimuli in pituitary gonadotropes. Overall design: SC Mini Drop-seq experiments were performed on two samples from dissociated human cortical tissue: one is neocortex from a glioblastoma multiforme (GBM, tumor), the other is normal neocortex adjacent to the tumor.
Single-cell stabilization method identifies gonadotrope transcriptional dynamics and pituitary cell type heterogeneity.
Specimen part, Subject
View SamplesThe equivalency of human induced pluripotent stem cells (hiPSCs) with human embryonic stem cells (hESCs) remains controversial. Here, we devised a strategy to assess the contribution of clonal growth, reprogramming method and genetic background to transcriptional patterns in hESCs and hiPSCs. Surprisingly, transcriptional variation originating from two different genetic backgrounds was dominant over variation due to the reprogramming method or cell type of origin of pluripotent cell lines. Moreover, the few differences we detected between isogenic hESCs and hiPSCs neither predicted functional outcome, nor distinguished an independently derived, larger set of unmatched hESC/hiPSC lines. We conclude that hESCs and hiPSCs are transcriptionally and functionally highly similar and cannot be distinguished by a consistent gene expression signature. Our data further imply that genetic background variation is a major confounding factor for transcriptional comparisons of pluripotent cell lines, explaining some of the previously observed expression differences between unmatched hESCs and hiPSCs. Overall design: Expression profiling of human embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and fibroblasts, mostly in triplicates.
A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesAtria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesAirways conduct gases to the lung and are disease sites of asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells by proximodistal location; a distinct cell type in high turnover squamous epithelial structures that we term ''hillocks''; and disease-relevant subsets of tuft and goblet cells. We developed ''pulse-seq'' , combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that characterize cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease. Overall design: To understand normal tissue homeostasis, untreated cells were profiled using both 3''-droplet-based and full length plate-based single-cell RNAseq, in combination with genetic reporter-based lineage tracing.
A revised airway epithelial hierarchy includes CFTR-expressing ionocytes.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesCOUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis.
COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.
Specimen part, Treatment, Time
View SamplesEarly EPCs (eEPCs) appear at less than 1 week in culture dishes, whereas late EPCs (LEPCs) appear late at 2-4 weeks. Distinct angiogenic properties between these two EPC subpopulations have been disclosed by the angiogenesis assay: late EPCs, but not eEPCs, form vascular networks de novo and are able to incorporate into vascular networks. On the contrary, eEPCs, but not late ones, indirectly augment tubulogenesis even when physically separated by a Transwell membrane, implying the involvement of a cytokine-based paracrine mechanism.
Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.
Specimen part, Time
View SamplesHigh glucose impairs the angiogenic activities of late endothelial precursor cells (EPC). We found that far infrared (FIR) treatment restored partially the activity of late EPC. However, the mechanisms are unclear. We performed gene expression microarray analysis to assess the expression profiles of high glucose-treated late EPC with or without FIR treatment.
Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.
Specimen part, Treatment
View Samples