Patients with systemic lupus erythematosus (SLE) have a markedly increased risk to develop cardiovascular disease, and traditional cardiovascular risk factors fail to account for this increased risk. We used microarray to probe the platelet transcriptome in individuals with SLE and healthy controls, and the gene and protein expression of a subset of differentially expressed genes was further investigated and correlated to platelet activation status. Real-time PCR was used to confirm a type I interferon (IFN) gene signature in patients with SLE, and the IFN-regulated proteins PRKRA, IFITM1 and CD69 (p<0.0001) were found to be up-regulated in platelets from SLE patients as compared to healthy volunteers. Notably, patients with a history of vascular disease had increased expression of type I IFN-regulated proteins as well as more activated platelets as compared with patients without vascular disease. We suggest that interferogenic immune complexes stimulate production of IFN which up-regulates the megakaryocytic type I IFN-regulated genes and proteins. This could affect platelet activation and contribute to development of vascular disease in SLE. In addition, platelets with type I IFN signature could be a novel marker for vascular disease in SLE.
Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease.
Sex, Age, Specimen part, Disease
View SamplesThe highly conserved Epidermal Growth Factor-receptor (Egfr) pathway is required in all animals for normal development and homeostasis; consequently, aberrant Egfr signaling is implicated in a number of diseases. Genetic analysis of Drosophila melanogaster Egfr has contributed significantly to understanding this conserved pathway and has led to the discovery of new components and targets. Here we used microarray analysis of Drosophila third instar wing discs, in which Egfr signaling was perturbed, to identify new Egfr-responsive genes. Upregulated transcripts included five known targets suggesting the approach was valid. We investigated the function of 29 previously uncharacterized genes, which had pronounced responses. The Egfr pathway is important for wing-vein patterning and using reverse genetic analysis we identified five genes that showed venation defects. Three of these genes are expressed in vein primordia and all showed transcriptional changes in response to altered Egfr activity consistent with being targets of the pathway. Genetic interactions with Egfr further linked two of the genes, Sulfated (Sulf1), an endosulfatase gene, and CG4096, an ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) gene, to the pathway. Sulf1 showed a strong genetic interaction with the neuregulin-like ligand vein (vn) and may influence binding of Vn to heparan-sulfated proteoglycans (HSPGs). Genetic evidence also shows that CG4096 functions by modulating activity of the Egfr ligands. The substrate(s) and how ligand activity is affected are unknown, but interestingly vertebrate EGF ligands are regulated by a related ADAMTS protein. We conclude Sulf1 and CG4096 are negative feedback regulators of Egfr signaling that function in the extracellular space to influence ligand activity.
New negative feedback regulators of Egfr signaling in Drosophila.
Specimen part
View SamplesCharacterization of the gene expression profiles of specific cell populations of the human urinary bladder provides an important set of research tools for the study of cellular differentiation and the cancer process. The transcriptome is a definitive identifier of each individual cell types. Surgically resected tissue was digested by collagenase and the different cell types were sorted by antibodies to cluster designation (CD) cell surface antigens. The sorted cells were analyzed by DNA microarrays. The transcriptome datasets were analyzed for differentially expressed genes and plotted on a principal components analysis space for cell lineage relationship. The following bladder cell types were analyzed: CD9+ urothelial, CD104+ basal, CD13+ stromal of lamina propria, CD9+ urothelial carcinoma cancer, and CD13+ urothelial carcinoma-associated stromal. Gene expression differences between the cell types of tumor and their respective non-cancer counterpart provide biomarker candidates. Basal cells of the bladder and prostate, although sharing CD cell surface markers, are quite different in overall gene expression. Furthermore, these cells lack transcript features of stem cell signature of embryonic stem or embryonal carcinoma cells. Cell type-specific transcriptomes are more informative than bulk tissue transcriptomes. The relatedness of different cell types can be determined by transcriptome dataset comparison.
Bladder expression of CD cell surface antigens and cell-type-specific transcriptomes.
Specimen part
View SamplesLuminal, basal, stromal, and endothelial cells were MACS sorted from whole tissue. Targets from five biological replicates of each were generated and the expression profiles were determined using Affymetrix U133 Plus 2.0 arrays. These data represent cell specific transcriptomes.
Transcriptomes of human prostate cells.
No sample metadata fields
View SamplesMicroRNAs predominantly decrease gene expression; however, specific mRNAs are translationally upregulated in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes by an FXR1a-associated microRNP (microRNA-protein complex) that lacks the microRNP repressor, GW182. We conducted global proteomic analysis in THP1 cells depleted of FXR1 to globally identify activation targets of more than one microRNA, since FXR1 is required for microRNAmediated translation activation in THP1 G0 cells by FXR1-microRNPs.Since proteomic data changes could also be due to changes at the RNA level, total RNA levels in FXR1knockdown compared to control shRNA cells were examined in parallel by microarray analysis using Affymetrix Human GeneChip 2.0 ST.
A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence.
Specimen part, Cell line
View SamplesThe prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. Isolation and characterization of viable populations of the constituent cell types of prostate tumors could provide valuable insight into the biology of cancer. The CD90+ stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between normal and tumor-associated reactive stromal cells. Reactive stroma is characterized by smooth muscle differentiation, prostate down-regulation of SPOCK3, MSMB, CXCL13, and PAGE4, bladder down-regulation of TRPA1, HSD17B2, IL24, and SALL1, and an up-regulation of CXC-chemokines. This study identified a group of differentially expressed genes in CD90+ reactive stromal cells that are potentially involved in organ development and smooth muscle cell differentiation.
Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes.
Specimen part
View SamplesThe importance of the role of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore co-expressed. The mir-11~998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of mir-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in highly penetrant pleiotropic developmental defects. We further show that this novel regulation of expression of miRNAs within a cluster is not limited to the mir-11~998 cluster and likely reflects the more general cis-regulation of expression of individual miRNAs. Thus, our results reveal a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift biological response. Overall design: RNA was extracted from Drosophila third instar larval eye discs of animals grown in standard conditions; Illumina HiSeq2000 Next Gen RNA Sequencing was performed, and differential expression of genes was assessed in wild-type vs unchecked miR-998 expression
Novel regulation and functional interaction of polycistronic miRNAs.
Specimen part, Subject
View SamplesExpression of dE2F1 induces proliferation and apoptosis. We sought to perform an unbiased analysis of the effect of co-expression of miR-11
mir-11 limits the proapoptotic function of its host gene, dE2f1.
Specimen part
View SamplesThe GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in the resistance to quinolones and beta-lactams such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold). The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were NorC (4-fold) and AbcA (6-fold). Other categories of genes such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time RT-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or down regulation by NorG. The norG mutant showed a twofold increase in the resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.
Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus.
No sample metadata fields
View SamplesWe implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis.
Probing the Xenopus laevis inner ear transcriptome for biological function.
Specimen part
View Samples