Implantation of an embryo in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the pregnant uterus, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing uterine-specific Alk2 conditional knockout (cKO) mice. In the absence of ALK2, embryos can invade the uterine epithelium and stroma, but stromal cells cannot undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of C/EBP to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (HESC) and discovered that ablation of ALK2 alters HESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing HESC confirmed that BMP signaling protein, SMAD1, directly regulates expression of CEBPB by binding a distinct regulatory sequence in the CEBPB promoter; C/EBP, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate embryo implantation in rodents and primates and, for the first time, uncovers a linear pathwayof BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.
Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans.
No sample metadata fields
View SamplesDetailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice.
Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress.
Age, Specimen part, Treatment
View SamplesBackground: We hypothesize that important genomic differences between breast cancer subtypes occur early in carcinogenesis. Therefore, gene expression might distinguish histologically normal breast epithelium (NlEpi) from breasts containing estrogen receptor positive (ER+) compared with estrogen receptor negative (ER-) cancers.
Gene expression profiles of estrogen receptor-positive and estrogen receptor-negative breast cancers are detectable in histologically normal breast epithelium.
Specimen part, Disease, Disease stage
View SamplesCerebral malaria is a severe multifactorial condition associated with the interaction of high numbers of infected erythrocytes to human brain endothelium without invasion into the brain. The result is coma and seizures with death in more than 20% of cases. Because the brain endothelium is at the interface of these processes, we investigated the global gene responses of human brain endothelium after the interaction with Plasmodium falciparuminfected erythrocytes with either high- or low-binding phenotypes. The most significantly up-regulated transcripts were found in gene ontology groups comprising the immune response, apoptosis and antiapoptosis, inflammatory response, cell-cell signaling, and signal transduction and nuclear factor B (NF-B) activation cascade. The proinflammatory NF-B pathway was central to the regulation of the P falciparummodulated endothelium transcriptome. The proinflammatory molecules, for example, CCL20, CXCL1, CXCL2, IL-6, and IL-8, were increased more than 100-fold, suggesting an important role of blood-brain barrier (BBB) endothelium in the innate defense during P falciparuminfected erythrocyte (Pf-IRBC) sequestration. However, some of these diffusible molecules could have reversible effects on brain tissue and thus on neurologic function. The inflammatory pathways were validated by direct measurement of proteins in brain endothelial supernatants. This study delineates the strong inflammatory component of human brain endothelium contributing to cerebral malaria.
Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium.
No sample metadata fields
View SamplesP. falciparum NF54 proliferates under micro-aerophilic conditions in an environment of 3% O2, 4% CO2, 93% N2. This strain was gradually adapted to proliferate under standard tissue culture conditions of 5% CO2/95% air (~19% O2) to generate P. falciparum HOX. We compared global gene expression profiles of the two strains to identify differences, if any.
Model system to define pharmacokinetic requirements for antimalarial drug efficacy.
No sample metadata fields
View SamplesDAZAP1 was depleted in culterd HEK 293T cells using shRNA and the resulting poly A RNA were isolated c-DNA library constructed and paired end sequenced on illumina Hi-seq 2000 platform the data was compared to a control shRNA depleted cell Overall design: Gene expression and splicing switches upon DAZAP1 knockdown
The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Malat1 is not an essential component of nuclear speckles in mice.
Age, Specimen part
View SamplesEGFR degradation is delayed in Cbl, Cbl-b double-deficient MCF10A but EGF stimulation does not enhance their growth.
Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation.
Cell line
View SamplesMalat1 is an abundant long noncoding RNA that localizes to nuclear bodies known as nuclear speckles, which contain a distinct set of pre-mRNA processing factors. Previous in vitro studies have demonstrated that Malat1 interacts with pre-mRNA splicing factors, including the serine- and arginine-rich (SR) family of proteins, and regulates a variety of biological processes, including cancer cell migration, synapse formation, cell cycle progression, and responses to serum stimulation. To address the physiological function of Malat1 in a living organism, we generated Malat1-KO (KO) mice using homologous recombination. Unexpectedly, the Malat1-KO mice were viable and fertile, showing no apparent phenotypes. Nuclear speckle markers were also correctly localized in cells that lacked Malat1. However, the cellular levels of another long noncoding RNA, Neat1, which is an architectural component of nuclear bodies known as paraspeckles, were downregulated in a particular set of tissues and cells lacking Malat1.
Malat1 is not an essential component of nuclear speckles in mice.
Specimen part
View SamplesThis study takes on the problem of bridging transcriptional data to neuronal phenotype and function by using publicly available datasets characterizing distinct neuronal populations based on gene expression, electrophysiology and morphology. In addition, a non-published PatchSeq dataset of Pvalb-cre positive cells in CA1 was used, which is the dataset submitted here. Taken together, these datasets were used to identify cross-cell type correlations between these data modalities. Detected correlations were classified as “class-driven” if they could be explained by differences between excitatory and inhibitory cell classes, or “non-class driven” if they could be explained by gradient like phenotypic differences within cell classes. Some genes whose relationships to electrophysiological or morphological properties were found to to be specific to either excitatory or inhibitory cell types. The Patch Seq data specifically allowed simultaneous single-cell characterization of gene expression and electrophysiology, showing that the gene-property correlations observed across cell types were further predictive of within-cell type heterogeneity. Overall design: Patchseq data was collected from single cells of the mouse hippocampus CA1 in order to investigate correlations between gene expression patterns and electrophysiological properties of various interneuron cell classes 19 individual cells Re-analysis details included in supplementary file readme.txt.
Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes.
Age, Specimen part, Subject
View Samples