Lymphoid committed CD34+lin-CD10+CD24- progenitors undergo a rebound at month 3 after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the absence of acute graft-versus-host disease (aGVHD). Here, we analyzed transcriptional programs of cell-sorted circulating lymphoid committed progenitors and CD34+Lin-CD10- non lymphoid progenitors in 11 allo-HSCT patients having (n=5) or not developed (n=6) grade 2 or 3 aGVHD and in 7 age-matched healthy donors. Major deregulated pathways included protein synthesis, energy production, cell cycle regulation and cytoskeleton organization. Notably, genes from protein biogenesis, translation machinery and cell cycle (CDK6) were over-expressed in progenitors from patients in the absence of aGVHD compared with healthy donors and patients affected by aGVHD. Expression of many genes from the mitochondrial oxidative phosphorylation metabolic pathway leading to ATP production were more specifically increased in lymphoid committed progenitors in absence of aGVHD. This was also the case for genes involved in cell mobilization such as those regulating Rho GTPases activity. In all, we show that circulating lymphoid committed progenitors undergo profound changes in metabolism favoring cell proliferation, energy production and cell mobilization after allo-HSCT in humans. These mechanisms are abolished in case of aGVHD or its treatment, indicating a persistent cell-intrinsic defect after exit from bone marrow.
Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans.
Disease, Disease stage, Subject
View SamplesInvariant natural killer T cells (iNKT) expressing the retinoic acid receptor-related orphan receptor γt (RORγt) and producing IL-17 represent a minor subset of CD1d-restricted iNKT cells (iNKT17) in C57BL/6J (B6) mice. We aimed in this study to define the reasons for their low distribution and the sequence of events accompanying their normal thymic development. We found that RORγt+ iNKT cells have higher proliferation potential and a greater propensity to apoptosis than RORγt- iNKT cells. These cells do not likely reside in the thymus indicating that thymus emigration, and higher apoptosis potential, could contribute to RORγt+ iNKT cell reduced thymic distribution. Ontogeny studies suggest that mature HSAlow RORγt+ iNKT cells might develop through developmental stages defined by a differential expression of CCR6 and CD138 during which RORγt expression and IL-17 production capabilities are progressively acquired. Finally, we found that RORγt+ iNKT cells perceive a strong TCR signal that could contribute to their entry into a specific Th17 like developmental program influencing their survival and migration. Overall, our study proposes a hypothetical thymic developmental sequence for iNKT17 cells, which could be of great use to study molecular mechanisms regulating this developmental program.
Characterization of the developmental landscape of murine RORγt+ iNKT cells.
No sample metadata fields
View SamplesAcute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.
Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.
Disease, Subject
View SamplesAcute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.
Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.
Age, Disease, Disease stage
View SamplesBackground & Aims Hepatocytes differentiated from human embryonic stem cells (hESCs) have the potential to overcome the shortage of primary hepatocytes for clinical use and drug development. Many strategies for this process have been reported, but the functionality of the resulting cells is incomplete. We hypothesize that the functionality of hPSC-derived hepatocytes might be improved by making the differentiation method more similar to normal in vivo hepatic development. Methods We tested combinations of growth factors and small molecules targeting candidate signaling pathways culled from the literature to identify optimal conditions for differentiation of hESCs to hepatocytes, using qRT-PCR for stage-specific markers to identify the best conditions. Immunocytochemistry was then used to validate the selected conditions. Finally, induction of expression of metabolic enzymes in terminally differentiated cells was used to assess the functionality of the hESC-derived hepatocytes. Results Optimal differentiation of hESCs was attained using a 5-stage protocol. After initial induction of definitive endoderm (stage 1), we showed that inhibition of the WNT/ß-catenin pathway during the 2nd and 3rd stages of differentiation was required to specify first posterior foregut, and then hepatic gut cells. In contrast, during the 4th stage of differentiation, we found that activation of the WNT/ß-catenin pathway allowed generation of proliferative bipotent hepatoblasts, which then were efficiently differentiated into hepatocytes in the 5th stage by dual inhibition of TGF-ß and NOTCH signaling. Conclusion Here, we show that stage-specific regulation of the WNT/ß-catenin pathway results in improved differentiation of hESCs to functional hepatocytes. Overall design: mRNA profiles of undifferentiated, definitive endoderm, stage 2-5 cell ines were generated by deep sequencing, in duplicate, as well as five liver samples.
Stage-specific regulation of the WNT/β-catenin pathway enhances differentiation of hESCs into hepatocytes.
Specimen part, Subject
View SamplesThe project used next generation sequencing for RNA-seq analysis, to identify transcriptome changes associated with tumorigenesis in two different caspase-2 knockout mice models. We describe key changes in both lymphoma and neuroblastoma associated genes in the two tumor types that may contribute to tumor outcome following loss of Casp2. We identified a panel of genes with altered expression in Th-MYCN/Casp2-/- tumors, that are strongly associated with neuroblastoma outcome, and which have roles in melanogenesis, Wnt and Hippo pathway signaling, that also contribute to neuronal differentiation. In addition, we found that key changes in gene expression in the EµMyc/Casp2-/- tumors, are associated with increased immune signaling and suggest that Casp2 deficiency augments immune signaling pathways that may be in turn, enhance lymphomagenesis. Overall, our study has identified new genes and pathways that contribute to the caspase-2 tumor suppressor function and highlight distinct roles for caspase-2 in different tissues. Overall design: We used tumors from EµMyc/Casp2-/- mice (which are more aggressive compared to their EµMyc counterarts) as well as tumors from Th-MycN/Casp2-/- mice (which show delayed tumour onset compared to Th-MycN mice) and compared the transcriptomes to their Casp2 wild type counterpart tumors. Sequencing was carried out with Illumina HiSeq 2000 and used short, single-end reads (1x 50bp flow cells) with 4 samples per lane. This yielded approximately 20-30 million raw reads per sample.
Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling.
Specimen part, Subject
View SamplesThe potential safety issues related to the acquisition of common genomic aberrations in hPSC cultures are well-recognized, but these risks have not been evaluated for sporadic mutations. Here, we explore whether a sporadic mutation that spontaneously arose in a hESC culture consisting of a single-copy deletion of chr17p13.1 would confer a survival advantage to the mutant cells. Compared to wild-type cells with two normal copies of the chr17p13.1 region, the mutant cells displayed a selective advantage when exposed to stressful conditions, and retained a higher percentage of pluripotent cells after two weeks of in vitro differentiation. Knockdown of TP53, which is a gene encompassed by the deleted region, in wild-type cells mimicked the chr17p13.1 deletion phenotype. RNA sequencing analysis showed differential expression of genes in pathways related to proliferation and differentiation. Thus, phenotypic implications of sporadic mutations must be taken into consideration before using the hPSC for clinical applications. Overall design: Triplicate cDNA libraries of two mutant WA09 lines with a single-copy deletion of chr17p13.1, and two wild-type WA09 lines, for a total of 12 libraries were sequenced using Illumina HiSeq 2500. The sequence reads were mapped to hg19 reference genome and hits that passed quality filters were analyzed for differential expression.
Spontaneous Single-Copy Loss of TP53 in Human Embryonic Stem Cells Markedly Increases Cell Proliferation and Survival.
No sample metadata fields
View SamplesT cells are critical for modulating immune responses. miRNAs are small, noncoding RNAs and play a significant role in T cell responses. miR-142 is a hematopoietic specific miRNA. To explore the potential role of miR-142 in regulating T cell responses, we generated mutant mice bearing a targeted deletion of the miR-142 gene.
Mature T cell responses are controlled by microRNA-142.
Sex, Age, Specimen part
View SamplesHere, we characterized the transcriptome of MCs under steady state, immunoglobulin E (IgE)-sensitized and anti-IgE-treated conditions. Overall design: MCs were left untreated or sensitized overnight with myeloma-IgE (0.5 µg/ml) and treated with anti-IgE (1 µg/ml) for 2h. RNA was isolated with Trizol and RNeasy columns and RNA-seq was performed.
Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases.
Specimen part, Subject
View SamplesDendritic cells (DCs) are pivotal for both recognition of antigens and control of an array of immune responses by recognizing microbes through distinct pattern recognition receptors (PRRs). The first microbial component to be studied in detail and known to cause septic shock is endotoxin (LPS). DCs recognize LPS via Toll-like receptor TLR-47. LPS causes many changes in the DCs, but the elicitation of cytokine production is perhaps the one with clear biologic relevance.
Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality.
Specimen part, Treatment
View Samples