Previously, we constructed a coculture model to analyze the effect of macrophages on intestinal epithelial cells, and found that TNF-a secreted from human macrophage-like THP-1 cells induced cell damage to intestinal epithelial Caco-2 cells (Exp.Cell.Res. 2006, 312(19):3909-19). In this study, we present activation of NF-kB in Caco-2 cells within 15 min after coculturing. To reveal how TNF-a secreted from THP-1 cells affects Caco-2 cells in an early stage of coculture, we exhaustively analyzed the changes of gene expression in Caco-2 cells cocultured with THP-1 cells over the time periods of 0, 1, 3, 6, 24, and 48 h by using a DNA microarray. Differentially expressed genes extracted with maSigPro demonstrated that IEX-1 was the lowest p-value gene, that is, the most significantly changed gene among the up-regulated genes. The genes expressed in a similar pattern to IEX-1 involved immunity, apoptosis, and protein kinase cascade. These findings suggest that the stimuli of TNF-a from THP-1 cells activates NF-kB, leading induction of various gene expression. This pattern of gene expression indicates that not only early defense response but also cell death occurs at the same time, causing inflammatory condition.
Transient up-regulation of immunity- and apoptosis-related genes in Caco-2 cells cocultured with THP-1 cells evaluated by DNA microarray analysis.
Cell line, Time
View SamplesGene expression profiling of two different E. coli CAUTI strains during biofilm growth in human urine.<br></br>
Escherichia coli isolates causing asymptomatic bacteriuria in catheterized and noncatheterized individuals possess similar virulence properties.
No sample metadata fields
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age, Specimen part
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female CBA mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.
Cell line, Treatment, Time
View SamplesRecent methylome studies have located N6-methyladenosine (m6A) RNA modification on thousands of mammalian transcripts. However, its functional mechanism remains unclear. In this study, we examined the role of m6A methylation in mouse embryonic stem cells.
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.
Cell line, Treatment, Time
View SamplesA total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR < 0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR < 0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated.
A differential gene expression study: Ptpn6 (SHP-1)-insufficiency leads to neutrophilic dermatosis-like disease (NDLD) in mice.
Disease, Disease stage
View SamplesTNF is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. Here we report a novel physiological function of TNF that extends its effect beyond the host into the developing offspring. A partial/complete maternal TNF-deficit, specifically in hematopoietic cells, resulted in reduced milk levels of chemokines IP-10, MCP-1/-3/-5, and MIP-1ß, which in turn, augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and adult spatial memory to normal levels. This work identifies a TNF-dependent “lactrocrine” pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity/exercise and adaptive stress; thus, we propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges/competition. Overall design: Examined transcriptomes of TNF wild type offspring of TNF wild type or heterozygouse mothers
Principles Governing DNA Methylation during Neuronal Lineage and Subtype Specification.
No sample metadata fields
View SamplesMicroRNAs (miRNAs) are important regulators and potential therapeutic targets of metabolic disease. In this study we show by in vivo administration of locked nucleic acid (LNA) inhibitors that suppression of endogenous miR-29 lowers plasma cholesterol levels by ~40%, commensurate with the effect of statins, and reduces fatty acid content in the liver by ~20%. Whole transcriptome sequencing of the liver reveals 883 genes dysregulated (612 down, 271 up) by inhibition of miR-29. The set of 612 down-regulated genes are most significantly over-represented in lipid synthesis pathways. Among the up-regulated genes are the anti-lipogenic deacetylase sirtuin 1 (Sirt1) and the anti-lipogenic transcription factor aryl hydrocarbon receptor (Ahr), the latter of which we demonstrate is a direct target of miR-29. In vitro radiolabeled acetate incorporation assays confirm that pharmacologic inhibition of miR-29 significantly reduces de novo cholesterol and fatty acid synthesis. Our findings indicate that miR-29 controls hepatic lipogenic programs, likely in part through regulation of Ahr and Sirt1, and therefore may represent a candidate therapeutic target for metabolic disorders such as dyslipidemia. Overall design: Hepatic mRNA profiles of C57BL/6J female mice treated with LNA against miR-29a, miR-29b and miR-29c versus saline.
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver.
No sample metadata fields
View SamplesHuman SLK cells were infected with wildtype (wt) and LANA knockout (KO) Kaposi's sarcoma-associated herpesvirus (KSHV), separately for 3 days. Cellular gene expression changes were identified upon the wild type and LANA KO KSHV virus infection compared to the uninfected SLK cells using the human gene expression microarray U133plus2.0.
LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection.
Cell line, Time
View Samples