We used a microarray to examine the global gene expression profile of MCF7 cells grown in 2D and 3D culture conditions. Our goal was to identify changes in the expression of genes that regulate iron metabolism when cellular spatial organization was altered.
Contribution of three-dimensional architecture and tumor-associated fibroblasts to hepcidin regulation in breast cancer.
Age, Specimen part, Cell line
View SamplesA genetic study of the PRF1 gene has shown association of several polymorphisms with multiple sclerosis (MS). Haplotype analysis identified risk haplotypes strongly associated with male patients having the primary-progressive form of MS (PPMS). Gene expression microarrays were performed in 10 male PPMS patients carrying the risk (n=6) and protective haplotypes (n=4) in order to identify pathways associated with the risk haplotypes. Pathway analysis revealed overrepresentation of the cell killing gene ontology category among down-regulated genes in patients carrying risk haplotypes compared with patients carrying protective haplotypes.
Gender-associated differences of perforin polymorphisms in the susceptibility to multiple sclerosis.
Sex, Specimen part, Disease
View SamplesFirst, transcriptome analysis of purified CD31+ endothelial cells (ECs) from VEGF-treated sprouting embryoid bodies showed angiogenesis as the top affected category when Apelin is not present. In addition, loss of Apelin resulted in the modulation of pathways in ECs related to vasculogenesis, cell adhesion and response to hypoxia. Ingenuity Pathway Analysis (IPA) further identified VEGFR pathway as the main upstream regulator affected in endothelial cells, closely followed by the TGFß1 and TNF pathways, all reduced in the absence of Apelin. The most inhibited genes from the VEGFR pathway in the absence of Apelin are angiogenesis-related genes. Second, transcriptome analysis of CD31+/CD105+ ECs sorted from Apelin wild-type and Apln-depleted tumors found a significant decrease in processes associated with endothelial cell proliferation and angiogenesis in ECs sorted out of Apelin-depleted tumors using IPA. Further, IPA predicted a decrease in the adhesion of granulocytes and upstream regulator analysis showed that proteins of the TGF-superfamily, Inhibin-ßA and TGF-ß1, as well as C/EBP-alpha, ß-Catenin, ErbB2 and EGFR are predicted to be inhibited upstream regulators in ECs isolated from Apelin-depleted tumors. Overall design: Transcriptome analysis of purified CD31+ endothelial cells from VEGF-treated in vitro sprouting vessels in Apelin presence or absence. Transcriptome analysis of tumor endothelial cells from Apelin wild-type and depleted conditions. We report the application of Smart-Seq2 sequencing to populations of 100 endothelial cells, sorted from tumors that were Apelin wild-type or depleted.
Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy.
Sex, Specimen part, Cell line, Treatment, Subject
View SamplesPrimary pneumocytes from KRas;Atg5fl/+ and KRas;Atg5fl/fl littermates were cultured for 48 hours and infected with AdCre-GFP to induce expression of the KrasG12D oncogene and concomitant Atg5 deletion. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in cellular movement, inflammatory response and oxidative stress response. Overall design: Comparison of transcriptomes from KRas;Atg5fl/+ and KRas;Atg5fl/fl pneumocytes
A dual role for autophagy in a murine model of lung cancer.
Specimen part, Subject
View SamplesWe aimed at analyzing the transcriptome changes associated with SPOP mutation in DU145 cells
SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair.
Cell line
View SamplesThe transcriptional profile of Kras;Rank +/+ and Kras;Rank fl/fl mouse primary pneumocytes were determined by mRNA sequencing and uncovered differences in their molecular signatures including genes involved in cell-cell junction, mitosis, mitochondrial homeostasis, TCA cycle and respiratory electron transport Overall design: Transcriptome comparison of primary pneumocytes purified from Kras;Rank+/+ and Kras;Rankfl/fl mice treated with Rankl ex vivo
RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.
Specimen part, Cell line, Subject
View SamplesWilsons disease (WD) is a relevant human genetic disease caused by mutations in the ATP7B gene, whose product is a liver enzyme responsible for copper export into bile and blood. Interestingly, the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations), though the reason for this is not well understood. Here we describe the successful generation of iPSCs from a Chinese patient with Wilsons disease that bears the R778L Chinese hotspot mutation in the ATP7B gene.
Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin.
Specimen part
View SamplesA better understanding of molecular changes during oral tumorigenesis may help defining new personalized prevention strategies. In order to test this hypothesis, we analyzed whole-genome expression changes in a murine model of oral carcinogenesis, induced by an oral carcinogen (4-NQO)
The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.
Sex, Specimen part
View SamplesCircular RNAs (circRNAs) are a large class of animal RNAs. To investigate possible circRNA functions, it is important to understand circRNA biogenesis. Besides human Alu repeats, sequence features that promote exon circularization are largely unknown. We experimentally identified new circRNAs in C. elegans. Reverse complementary sequences between introns bracketing circRNAs were significantly enriched compared to linear controls. By scoring the presence of reverse complementary sequences in human introns we predicted and experimentally validated novel circRNAs. We show that introns bracketing circRNAs are highly enriched in RNA editing or hyper-editing events. Knockdown of the double-strand RNA editing ADAR1 enzyme significantly and specifically up-regulated circRNA expression. Together, our data support a model of animal circRNA biogenesis in which competing RNA:RNA interactions of introns form larger structures which promote circularization of embedded exons, while ADAR1 antagonizes circRNA expression by melting stems within these interactions. Thus, we assign a new function to ADAR1. Overall design: Examination of 12 samples in different stages of C.elegans development.
Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.
Cell line, Treatment, Subject
View SamplesBackground. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Background. More than one million women in fertile age are infected with Trypanosoma cruzi worldwide. Anti-T.cruzi seropositivity in mothers has been associated with adverse pregnancy outcome but there is still a knowledge gap regarding this effect. Our aim was to compare the gene expression profile of term placental environment from T. cruzi seropositive (SP) and seronegative (SN) mothers. Methods. A RNA-Seq was performed in 9 pools of 2 different placental RNA samples each: 3 belonging to placentas from SN and 6 from SP. Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. None of the newborns resulted infected. Results. Only 42 genes showed a significant fold change between SP and SN groups. Among the down-regulated genes were KISS1 and CGB5. In the up-regulated genes group were: KIF12, HLA-G, PRG2, TAC3, FN1 and ATXN3L. To identify pathways significantly associated with maternal T. cruzi-infection, a gene-set association analysis was implemented. The placental environment transcriptomic profile of SP consisted of an enrichment in immunological genes sets (inflammatory response and lymphocytic activation were over-expressed) whereas numerous biosynthetic processes were down-regulated. Conclusions. It is worth noting that several differentially expressed genes in SP placentas code for proteins associated to preeclampsia and miscarriage. This first transcriptomics study in human term placental environment from non-infected deliveries shows a placental response that may affect the faetus while protecting it from the parasite infection; this host response could be responsible for the low rate of congenital transmission observed in human chronic Chagas disease. Overall design: Serodiagnosis of pregnant women was done by means of conventional serological methods and carried out by the respective health centres based on routine assays. In maternal and umbilical cord blood samples T. cruzi presence was tested using multiplex Real Time PCR as previously described [6]. Maternal infection with other pathogens that produce congenital transmission and adverse pregnancy outcome were considered as exclusion criteria, as well as missing data or incorrect sampling. Fresh normal placentas were obtained after labour from vaginal or caesarean deliveries and placed within 24 hours at 4°C. Each placenta was dissected and the middle section [7] at 2 cm distance from the umbilical cord was isolated and placed into RNAlater solution (Applied Biosystems, Foster City, CA). Total RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA) and stored at -80°C until used. Transcriptomic studies. A RNA-Seq experiment was done in 9 pools of 2 different placental RNA samples each: 3 pools (C1, C2 and C3) belonging to placentas from seronegative mothers (SN) and 6 pools (TC4 to TC9) from seropositive mothers (SP). Each pool consisted of a binomial of a female/male newborn and a vaginal/caesarean delivery. The cDNA Libraries were prepared according to Illumina''s TruSeq Stranded Total RNA with Ribo-Zero Gold for Human and a Hiseq 2.500 Illumina platform with 100 bp paired-end reads was used for sequencing
Alterations in Placental Gene Expression of Pregnant Women with Chronic Chagas Disease.
Subject
View Samples