Soman (O-Pinacolyl methylphosphonofluoridate) is a potent neurotoxicant. Acute exposure to soman causes profound inhibition of the critical enzyme acetylcholinesterase, resulting in excessive levels of the neurotransmitter acetylcholine. Excessive acetylcholine levels cause convulsions, seizures, and respiratory distress. The initial cholinergic crisis can be overcome by rapid anti-cholinergic therapeutic intervention, resulting in increased survival. However, conventional treatments do not protect the brain from seizure-related damage, and thus neurodegeneration of soman-sensitive areas of the brain is a potential post-exposure outcome. We performed gene expression profiling of rat hippocampus following soman exposure to gain greater insight into the molecular pathogenesis of soman-induced neurodegeneration.
Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman.
Sex
View SamplesThe present study aimed to determine mRNA expression profilling of indirect immobilized Jagged1 treated human dental pulp cells. Human dental pulp cells were seeded on indirect immobilized Jagged1 surface for 24 h. Cells on hFc immobilized surface was employed as the control. RNA sequencing was performed using NextSeq500, Illumina. Data were processed on FastQC and FastQ Toolkit and subsequently mapped with Homo sapiens hg38 using TopHat2. Mapped data were processed through Cufflink2 and Cuffdiff2. Results demonstrated 1,465 differentially expressed genes in Jagged1 treated cells compared with the control. Enriched pathway analysis revealed that Jagged1 treated cells upregulated genes mainly involved in extracellular matrix organization, disease, and signal transduction categories. However, genes related to cell cycle, DNA replication and DNA repair categories were downregulated. In conclusion, Jagged1 activates Notch signaling and regulates cell cycle pathway in hDPs. Overall design: The mRNA profiles of human dental pulp cells treated with indirect immobilized Jagged1 (10nM) for 24 h was evaluated by next genereation RNA sequencing (NextSeq 500, Illumina) in triplicates. Cells on hFc immobilized surface was used as the control. In some condition, cells were pretreated with a gamma secretase inhibitor (DAPT; 20 uM) for 30 mins prior to Jagged1 exposure.
RNA sequencing data of Notch ligand treated human dental pulp cells.
Specimen part, Treatment, Subject
View SamplesCOHCAP (City of Hope CpG Island Analysis Pipeline) is an algorithm to analyze single-nucleotide resolution DNA methylation data. It provides QC metrics, differential methylation for CpG Sites, differential methylation for CpG Islands, integration with gene expression data, and visualization of methylation values. COHCAP is currently the only DNA methylation package that can handle integration with gene expression data, and the results of this study show that COHCAP can identify regions of differential methylation with ~50% concordance with gene expression. COHCAP is scalable for analysis of both cell line data and heterogeneous patient data, and it can identify known cancer biomarkers as well as intriguing new roles of epigenetic regulation in cancer (such as methylation of estrogen receptor in breast cancer patients). This study also uses cell line data to show that COHCAP is capable of analyzing Illumina methylation array and targeted bisulfite sequencing data, with either 1-group or 2-group study designs. The accuracy of COHCAP is accessed using qPCR, EpiTect, and comparison of COHCAP regions of differential methylation with MIRA peaks. This software is freely available at https://sourceforge.net/projects/cohcap/.
COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.
Disease, Cell line
View SamplesGenome-wide expression and methylation differences are compared for a normal HCT116 cell line and a derived mutant with altered DNA methylation patterns.
COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.
Cell line
View SamplesIn this report, Tompkins et al describe the derivation, differentiation stage-specific purification, and genome-wide analysis of cardiomyocytes derived from hESCs. Key features of the molecular programs that define human cardiac muscle cell differentiation were described and researchers observed that cells may harbor epigenetic DNA methylation “memories” that reflect the gene activation history of important developmental genes. Overall design: For RNA-seq. Cardiomyocyte differentiation from human embryonic stem cells (H7). 11 time point pilot time series. D3 and D4 samples FACS sorted for primitive and cardiac mesoderm isolation, respectively. Data from negatives sorts (minus) included as well.
Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation "Memories".
No sample metadata fields
View SamplesEffect of injury and Pseudomonas aeruginosa inoculation in Drosophila melanogaster
Involvement of skeletal muscle gene regulatory network in susceptibility to wound infection following trauma.
Sex, Time
View SamplesA transcription factor Nkx2-1 (also known as TTF-1) regulates the expression of different sets of genes. Gene expression analysis was performed using mRNAs from Nkx2-1-induced A549 cells compared to that from the control A549 cells. We used microarrays to detail the global program of gene expression controlled by Nkx2-1 and identified distinct classes of up-regulated and down-regulated genes.
Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung.
Cell line
View SamplesTransgenic mice (Scgb1a1-rtTA/[tetO]-KRAS.G12D/Nkx2-1+/-) develop mucinous lung tumors. Gene expression analysis was performed using mRNAs from the whole lungs of the mice compared to that of the control mice.
Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung.
Specimen part
View SamplesThe Pseudomonas aeruginosa MvfR-dependent QS regulatory pathway controls the expression of key virulence genes; and is activated via the extracellular signals 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), whose syntheses depend on anthranilic acid (AA), the primary precursor of 4-hydroxy-2-alkylquinolines (HAQs). We identified halogenated AA analogs that specifically inhibited HAQ biosynthesis and disrupted MvfR-dependent gene expression. These compounds restricted P. aeruginosa systemic dissemination and mortality in mice, without perturbing bacterial viability, and inhibited osmoprotection, a widespread bacterial function.
Inhibitors of pathogen intercellular signals as selective anti-infective compounds.
No sample metadata fields
View SamplesMonitoring genome-wide, cell-specific responses to human disease, although challenging, holds great promise for medicines future. Patients with injury severe enough to develop multiple organ dysfunction syndrome (MODS) are known to have multiple immune derangements, including T-cell apoptosis and anergy combined with depressed monocyte antigen presentation. Genome-wide expression analysis of highly-enriched circulating leukocyte subpopulations, combined with cell-specific pathway analyses, offers a previously unavailable opportunity to discover novel leukocyte regulatory networks in critically injured patients. Severe injury induced significant changes in the T-cell, monocyte, and total leukocyte transcriptome, with only 12% of these genomic changes common to all three cell populations. T-cell-specific pathway analyses identified increased gene expression of several novel inhibitory receptors (PD-1, CD152, NRP-1, Lag3), and concomitant decreases in stimulatory receptors (CD28, CD4, IL-2Ralpha). Functional analysis of T-cells and monocytes confirmed reduced T-cell proliferation and increased cell surface expression of negative signaling receptors paired with decreased monocyte costimulation ligands. Thus, genome-wide expression from highly-enriched cell populations combined with knowledge-based pathway analyses leads to the identification of novel regulatory networks differentially expressed in injured patients. Importantly, application of cell separation, genome-wide expression, and cell specific pathway analyses can be used to discover novel pathway alterations in human disease.
Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways.
No sample metadata fields
View Samples