Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy that debilitates the voluntary and autonomous response of the patient. In this study the transcriptome of peripheral blood mononuclear cells from a GBS patient and her healthy twin were compared to discover possible correlates of disease progression and recovery. Overall design: Blood samples were collected simultaneously from the Guillain-Barré patient (A) and from her control healthy twin (B) at three different time points during disease progression from hospitalization in the intensive care unit (T1), passing to intermediate care (T2), and at conclusion of locomotion rehabilitation program when the patient was close to abandon the hospital (T3).
Expression of Early Growth Response Gene-2 and Regulated Cytokines Correlates with Recovery from Guillain-Barré Syndrome.
No sample metadata fields
View SamplesMath2 (NEX-1/NeuroD6) is a member of the bHLH transcription factor family and is involved in neuronal differentiation and maturation. In the present study, we identified the genes targeted by Math2 using DNA microarrays and cultured rat cortical cells transfected with Math2. Of the genes regulated by Math2, we focused on plasticity-related gene 1 (Prg1). Prg1 expression induced by Math2 was confirmed in cultured rat cortical cells and PC12 cells analyzed by real-time quantitative PCR. Examining the promoter region of rat Prg1, we found four E-boxes designated -E1 to -E4 (CANNTG) which were recognized by the bHLH transcription factor. Using chromatin immunoprecipitation (ChIP) assays, we found that Math2 directly bound to the E-box(es) in the Prg1 promoter. The reporter assay of Prg1 showed that -E1 was critical for the regulation of the Prg1 expression by Math2. Then, the functional role of Math2 and Prg1 was investigated in PC12 cells. Seventy-two hours after transfection of Math2 or Prg1, neurite length and number was significantly induced in PC12 cells. Co-transfection with Prg1-siRNA completely inhibited Math2-mediated morphological changes. Our results suggest that Math2 directly regulates Prg1 expression and Math2-Prg1 cascade plays an important role in neurite outgrowth in PC12 cells.
Prg1 is regulated by the basic helix-loop-helix transcription factor Math2.
No sample metadata fields
View SamplesMediator complex has been known as pivotal regulator of RNA polymerase II. Mediator complex has two CDK subunits in vertebrates, named CDK8 and CDK19. To elucidate functional difference between CDK8 and CDK19 in human cell, we employ siRNA mediate knockdown assay using HeLa S3 cell line. According to this assay these CDKs possess highly redundancy in HeLa S3 cell transcription regulation mechanism but in several genes, each CDK shows gene specific regulatory function.
Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes.
Cell line
View SamplesThe objective of the present study is to investigate the role of DNA-PK inhibition in cell death induced by heat stress (44C, 60 min). Comparative gene expression analysis was performed with mock cells, negative control siRNA-treated cells and DNA-PK siRNA-treated cells. The expression of DNA-PK was confirmed by Western blotting. Gene expression was analyzed using GeneChip oligonucleotide microarrays and computational gene expression analysis tools.
Inactivation of DNA-dependent protein kinase promotes heat-induced apoptosis independently of heat-shock protein induction in human cancer cell lines.
Sex, Specimen part, Cell line, Treatment
View SamplesWe modeled human Trisomy 21 primitive hematopoiesis using induced pluripotent stem cells (iPSCs). Primitive multipotent progenitor populations generated from Trisomy 21 iPSCs showed normal proliferative capacity and megakaryocyte production, enhanced erythropoiesis and reduced myeloid development compared to euploid iPSCs.
Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Bifidobacteria can protect from enteropathogenic infection through production of acetate.
No sample metadata fields
View SamplesA huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk. Accordingly, we took advantage of the protective mechanisms of probiotics against lethal infection of enterohemorrhagic Escherichia coli O157:H7 in murine gnotobiote model system
Bifidobacteria can protect from enteropathogenic infection through production of acetate.
No sample metadata fields
View SamplesDiet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor antagonist and a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, reportedly has beneficial effects on insulin sensitivity. We studied the effects of telmisartan on the adipose tissue macrophage phenotype in high fat-fed mice. Telmisartan was administered for 5 weeks to high fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in epididymal fat tissues were examined. Insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight and adipocyte size without affecting the amount of food intake. Telmisartan treatment reduced the number of CD11c-positive cells and crown-like structures. Telmisartan reduced the mRNA expressions of M1 macrophage markers, such as TNF-alpha and IL-6, and increased the expression of M2 markers, such as IL-10 and Mgl2. The reduction of M1 macrophage markers, as well as the increased gene expression of M2 markers especially IL-10, is a possible mechanism for the improvement of insulin sensitivity by telmisartan.
Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.
Sex, Specimen part, Treatment
View SamplesA huge number of microorganisms are colonized in human gut and the balance of their composition is closely related to human health. Recently, many probiotics such as bifidobacteria or lactobacilli have been introduced in our life as effective agents. However, we have not well understood their beneficial mechanisms including host-bacterial crosstalk To analyze the differences of gene expression between BA- or BL-associated murine colonic epithelium, we performed comparative transcriptomic analysis.
Bifidobacteria can protect from enteropathogenic infection through production of acetate.
No sample metadata fields
View SamplesTo examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.
Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.
Sex, Specimen part
View Samples