The organization of mammalian DNA replication is poorly understood. We have produced genome-wide high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal and embryonic stem cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy number variations during S phase obtained using either high-density oligonucleotide tiling arrays or massively-parallel sequencing to produce replication timing profiles. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by SMARD analysis. Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarter of S phase and that ES cells replicate a larger proportion of their genome in early S phase than erythroid cells. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid firing origins are located near moderately expressed genes and that late firing origins are located far from genes.
Predictable dynamic program of timing of DNA replication in human cells.
Specimen part
View SamplesTo validate the suitability of two commonly used colorectal cancer cell lines, DLD1 and SW480, as model systems to study colorectal carcinogenesis, we treated these cell lines with -catenin siRNA and identified -catenin target genes using DNA microarrays. The list of identified target genes was compared to previously published -catenin target genes found in the PubMed and the GEO databases.
Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling.
Cell line, Treatment
View SamplesThe comparative advantages of RNA-Seq and microarrays in transcriptome profiling were evaluated in the context of a comprehensive study design. Gene expression data from Illumina RNA-Seq and Affymetrix microarrays were obtained from livers of rats exposed to 27 agents that comprised of seven modes of action (MOAs); they were split into training and test sets and verified with real time PCR. Overall design: 105 samples were selected from the DrugMatirx tissue/RNA bank that is now owned by the National Toxicology Program (NTP). The samples were split into 2 sets, training and test, to allow for the evaluation of classifiers derived from the data. There were 63 samples in the training set and 42 in the test set. Of the 63 samples in the training set 45 were derived from rats treated with test agent and 18 were control samples (3 sets of 6). 39 of the test set samples were derived from test agent treated animals and 6 were from vehicle and route matched controls. Five MOAs were represented in the training set and 4 MOAs were in the test set. Two of the MOAs were duplicated from the test set and two were without representation in the training set. For each test agent there were three rats treated, in accordance with the common practice in the field of toxicology. For each MOA there were three representative test agents to ensure adequate power for detecting the MOA signatures. 6 samples from the training set had duplicate libraries sequenced and duplicate sequencing runs for the first library. DrugMatrix, National Toxicology program (NTP) Sequencing was carried out in Dr. Charles Wang's Functional Genomics Core at City of Hope Comprehensive Cancer Center, Duarte, CA
Transcriptomic profiling of rat liver samples in a comprehensive study design by RNA-Seq.
No sample metadata fields
View SamplesSignal transduction processes mediated by phosphatidyl inositol phosphates affect a broad range of cellular processes such as cell cycle progression, migration and cell survival. The protein kinase AKT is one of the major effectors in this signaling network. Chronic AKT activation contributes to oncogenic transformation and tumor development. Therefore, new small drugs were designed to block AKT activity for cancer treatment.
Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations.
Specimen part, Cell line
View SamplesThe transcriptional effects of urocortin I, urocortin II and tempol were compared to saline treatment in a rat model of in vivo coronary artery occlusion model of ischaemia/reperfusion injury of 25 min ischaemia and 2 hr reperfusion. <br></br>The treatment groups were as follows (i) sham operation or LAD occlusion with infusion of (ii) saline, (iii) 15 ?g/kg Ucn I, (iv) 15 ?g/kg Ucn II and (v) 100 mg/kg tempo infused just prior to reperfusionl.<br></br>Following 2 hr reperfusion the left ventricle was removed, snap frozen, followed by RNA extraction.
New targets of urocortin-mediated cardioprotection.
Sex, Age, Specimen part, Disease, Disease stage, Subject, Compound, Time
View SamplesThe objective of the present study was to identify genes that are involved in increasing the ovulation number in mouse line FL1 that had been selected for high fertility performance.
Expression profiling of a high-fertility mouse line by microarray analysis and qPCR.
No sample metadata fields
View SamplesmRNA expression levels in synovial fibroblasts in 6 rheumatoid arthritis patients versus 6 osteoarthritis patients.
Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts.
No sample metadata fields
View SamplesInterleukin-21 (IL-21) is a pleiotropic cytokine that induces expression of transcription factor BLIMP1 (encoded by Prdm1), which regulates plasma cell differentiation and T cell homeostasis. We identified an IL-21 response element downstream of Prdm1 that binds the transcription factors STAT3 and IRF4, which are required for optimal Prdm1 expression. Genome-wide ChIP-Seq mapping of STAT3- and IRF4-binding sites showed that most regions with IL-21-induced STAT3 binding also bound IRF4 in vivo, and furthermore, revealed that the noncanonical TTCnnnTAA GAS motif critical in Prdm1 was broadly used for STAT3 binding. Comparing genome-wide expression array data to binding sites revealed that most IL-21-regulated genes were associated with combined STAT3-IRF4 sites rather than pure STAT3 sites. Correspondingly, ChIP-Seq analysis of Irf4_/_ T cells showed greatly diminished STAT3 binding after IL-21 treatment, and Irf4_/_ mice showed impaired IL- 21-induced Tfh cell differentiation in vivo. These results reveal broad cooperative gene regulation by STAT3 and IRF4.
Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors.
Specimen part
View SamplesAcute myeloid leukemia (AML) is a heterogeneous disease and AML with normal karyotype (AML-NK) is categorized as an intermediate-risk group. Over the past years molecular analyses successfully identified biomarkers that will further allow to dissecting clinically meaningful subgroups in this disease. Thus far, somatic mutations were identified which elucidate the disturbance of cellular growth, proliferation, and differentiation processes in hematopoietic progenitor cells. In AML-NK, acquired gene mutations with prognostic relevance were identified for FLT3, CEBPA, and NPM1. FLT3-ITD mutations were associated with short relapse-free and overall survival, while mutations in CEBPA or NPM1 (without concomitant FLT3-ITD) had a more favorable outcome.
Quantitative comparison of microarray experiments with published leukemia related gene expression signatures.
Sex, Age, Disease, Disease stage
View SamplesThe purpose of this study was to characterize the transcriptional effects induced by subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with relapsing-remitting form of multiple sclerosis (MS).
Long-term genome-wide blood RNA expression profiles yield novel molecular response candidates for IFN-beta-1b treatment in relapsing remitting MS.
Sex
View Samples