Cross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View SamplesCross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View SamplesCross-presentation of cell-associated antigens is carried out by classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs), but whether a similar or distinct program exists for this process is unknown. In examining this issue, we discovered that only Ly-6ChiTremL4 monocytes, but not Ly-6ChiTremL4+ monocytes, can differentiate into Zbtb46+ Mo-DCs in response to GM-CSF and IL-4. However, Ly-6ChiTremL4+ monocytes were committed to Nur77-dependent development of Ly-6CloTremL4+ monocytes. Further, differentiation of monocytes with GM-CSF required addition of IL-4 to generate Zbtb46+ Mo-DCs that cross-presented as efficiently as CD24+ cDCs, which was accompanied by increased Batf3 and Irf4 expression. Unlike cDCs, Mo-DCs required only IRF4, and not Batf3, for cross-presentation. Further, Irf4/ monocytes failed to develop into Zbtb46+ Mo-DCs, and instead developed into macrophages. Thus, cDCs and Mo-DCs use distinct transcriptional programs for cross-presentation that may drive different antigen-processing pathways. These differences may influence development of therapeutic DC vaccines based on Mo-DCs.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Altered compensatory cytokine signaling underlies the discrepancy between <i>Flt3<sup>-/-</sup></i> and <i>Flt3l<sup>-/-</sup></i> mice.
Specimen part
View SamplesThe goal of this study was to determine whether there are any gene expression changes in cDC1s and cDC2s from WT, Flt3 KO, or Flt3L KO mice. Specifically whether developing in the absence of Flt3 signaling had any effects on the gene expression of the cDCs
Altered compensatory cytokine signaling underlies the discrepancy between <i>Flt3<sup>-/-</sup></i> and <i>Flt3l<sup>-/-</sup></i> mice.
Specimen part
View SamplesTo determine any expresssion changes in cDC2s from WT and CD11c-Cre Notch2f/f mice immunized with sheep red blood cells
Notch2-dependent DC2s mediate splenic germinal center responses.
Specimen part
View SamplesThe goal of this study was to determine whether there are any gene expression changes in pDCs from WT and Flt3 KO mice. Specifically whether developing in the absence of Flt3 signaling had any effects on the gene expression of the pDCs
Altered compensatory cytokine signaling underlies the discrepancy between <i>Flt3<sup>-/-</sup></i> and <i>Flt3l<sup>-/-</sup></i> mice.
Specimen part
View SamplesWe used microarrays to detail cDC gene expression program controlled by IRF4 and IRF8.
High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity.
Specimen part
View SamplesWe used microarrays to understand roles of BATF proteins in the regulation of cDC-specific gene expression.
High Amount of Transcription Factor IRF8 Engages AP1-IRF Composite Elements in Enhancers to Direct Type 1 Conventional Dendritic Cell Identity.
Specimen part
View Samples