Background: Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of stage M patients present with disseminated tumor cells (DTCs) in the bone marrow (BM). Although these cells represent a major obstacle in the treatment of neuroblastoma patients, their transcriptomic profile was not intensively analyzed so far. Results: RNA-Seq of stage M primary tumors, enriched BM-derived DTCs and the corresponding non-tumor mononuclear cells (MNCs) revealed that DTCs largely retained the gene expression signature of tumors. However, we identified 322 genes that were differentially expressed (q < 0.001, |log2FC|>2). Particularly genes encoded by mitochondrial DNA were highly up-regulated in DTCs, whereas e.g. genes involved in angiogenesis were down-regulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8x10-75 log2FC > 6). Interestingly, we found that the gene expression profiles of diagnostic DTCs largely resembled those of relapse DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2FC| > 0.5). Notably, relapse DTCs showed a positional enrichment of 31 down-regulated genes encoded by chromosome 19, including five tumor suppressor genes (SIRT6, PUMA, STK11, CADM4 and GLTSCR2). Conclusion: This first RNA-Seq analysis of DTCs from neuroblastoma patients revealed their unique expression profile in comparison to the corresponding MNCs and tumor samples, and, interestingly, also expression differences between diagnostic and relapse DTCs preferentially affecting chromosome 19. As these alterations might be associated with treatment failure and disease relapse, they should be considered for further functional studies. Overall design: Tumor (n=16), bone marrow-derived disseminated tumor cells (n=42) and corresponding bone marrow-derived non-tumor cells (n=28) of stage M neuroblastoma patients were used for RNA-Seq
Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent tumor progression.
Specimen part, Subject
View SamplesThe remarkable feature of Schwann cells (SCs) to transform into a repair phenotype turned the spotlight on this powerful cell type. SCs provide the regenerative environment for axonal re-growth after peripheral nerve injury (PNI) and play a vital role in differentiation of neuroblastic tumors into a benign subtype of neuroblastoma, a tumor originating from neural crest-derived neuroblasts. Hence, understanding their mode-of-action is of utmost interest for new approaches in regenerative medicine, but also for neuroblastoma therapy. However, literature on human SCs is scarce and it is unknown to which extent human SC cultures reflect the SC repair phenotype developing after PNI in patients. We performed high-resolution proteome profiling and RNA-sequencing on highly enriched human SC and fibroblast cultures, control and ex vivo degenerated nerve explants to identify novel molecules and functional processes active in repair SCs. In fact, we found cultured SCs and degenerated nerves to share a similar repair SC-associated expression signature, including the upregulation of JUN, as well as two prominent functions, i.e., myelin debris clearance and antigen presentation via MHCII. In addition to myelin degradation, cultured SCs were capable of actively taking up cell-extrinsic components in functional phagocytosis and co-cultivation assays. Moreover, in cultured SCs and degenerated nerve tissue MHCII was upregulated at the cellular level along with high expression of chemoattractants and co-inhibitory rather than -stimulatory molecules. These results demonstrate human SC cultures to execute an inherent program of nerve repair and support two novel repair SC functions, debris clearance via phagocytosis-related mechanisms and type II immune-regulation. Overall design: mRNA of 27 samples were sequenced (50bp, single end) and analyzed. Biological replicates were performed.
Proteomics and transcriptomics of peripheral nerve tissue and cells unravel new aspects of the human Schwann cell repair phenotype.
Subject
View SamplesFluorine-18-fluoro-2-deoxy-D-glucose (FDG) is widely used as positron-emission-tomography (PET) radiotracer for the detection and staging of human cancer. Tumor uptake of FDG varies substantially between different cancer types and between patients with the same tumor type. The molecular basis for this heterogeneity is unknown. Using cancer cell lines and primary human tumors of distinct histologic origins, we here show that increased FDG uptake is universally associated with coordinate upregulation of genes within the glycolysis, pentose-phosphate, and other related metabolic pathways. In primary human breast cancers, this FDG signature shows significant overlap with established breast cancer signatures for the basal-like disease subtype and poor prognosis. FDG high breast cancer showed significantly more gene copy number alterations genome wide than FDG low cancers. About 50 % of primary breast cancers with high FDG uptake and FDG gene expression signature show DNA copy gain encompassing the c-myc gene locus and express gene sets regulated by the transcription factor MYC. Our data shows that FDG-PET marks a distinct subset of basal-like human breast cancer which is characterized by MYC and prognostically unfavorable gene expression signatures, suggesting that FDG-PET imaging may be useful to risk-stratify patients with locally advanced breast cancer.
18F-fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing human basal-like breast cancers.
Specimen part, Cell line
View SamplesPosttranscriptional regulation of mRNA levels in neutrophils and its consequences for immune responses are unexplored. By employing profiling of the neutrophil transcriptome we show that the mRNA-destabilizing protein tristetraprolin (TTP) limits the expression of hundreds of genes, including genes negatively regulating apoptosis. Elicited TTP-deficient neutrophils exhibited reduced apoptosis and were increased in numbers. The anti-apoptotic protein Mcl-1 was elevated in TTP-deficient neutrophils and Mcl1 mRNA was bound and destabilized by TTP. Ablation of TTP in macrophages and neutrophils resulted in an improved defense and survival of mice during invasive infection with Streptococcus pyogenes. Mice lacking myeloid TTP prevented dissemination of bacteria and efficiently blunted systemic disease by massive but controlled neutrophil deployment. These data identify posttranscriptional control by TTP to restrict neutrophils and antimicrobial defense. Overall design: WT and TTPKO peritoneal neutrophils stimulated with LPS for 4 h. Each condition analyzed in three replicates
The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection.
Subject
View SamplesAlbeit increased serum CK level and abnormal muscle histology are always present, boys with DMD are phenotipically indistinguishable from the normal ones at birth and, in their first years of life, acquire early motor milestones at normal times. A clear defect in muscle function becomes generally apparent by the end of the second year. As the disease is typically diagnosed between the ages of 3 and 7, the first two years are often considered and referred to as clinically presymptomatic.
Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression.
Sex, Age
View SamplesDifferentially expressed genes along the paraxial mesoderm of 12 somite stage zebrafish embryos are identified
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.
Specimen part
View SamplesWe previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as responder cells. In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (responder genes), but extremely low expression in the Pr-HP cells.
Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6.
Cell line
View SamplesThe Drosophila midgut is an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells’ (ISCs) ability to function in tissue homeostasis. Due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines, it has been a major challenge to study endogenous molecular changes of ISCs during aging. Our FACS-based approach using the esg-GAL4, UAS-GFP fly line allowed the isolation of a cell population enriched for ISCs from young and old midguts by their small size, little granularity and low GFP intensity. The isolated ISCs were subsequently used for RNA sequencing to identify endogenous changes in the transcriptome of young versus old ISCs. Overall design: Cell populations enriched for ISCs isolated from young (6-8 days old) and old (59-65 days old) midguts were sorted. Cells from three different batches of young and old midguts were subjected to Next Generation Sequencing using Illumina Genome Analyzer IIx.
Nipped-A regulates intestinal stem cell proliferation in <i>Drosophila</i>.
Age, Specimen part, Subject
View SamplesWe investigated the route of neurotrophic cue delivery to the nerves
Loss of p53 drives neuron reprogramming in head and neck cancer.
Specimen part
View SamplesThe supraoptic nucleus (SON) of the hypothalamus is an important integrative brain structure that co-ordinates responses to perturbations in water balance and regulates maternal physiology through the release of the neuropeptide hormones vasopressin and oxytocin into the circulation. Both dehydration and lactation evoke a dramatic morphological remodelling of the SON, a process known as function-related plasticity. We hypothesise that some of the changes seen in SON remodelling are mediated by differential gene expression, and have thus used microarrays to document global changes in transcript abundance that accompany chronic dehydration in female rats, and in lactation. In situ hydridisation analysis has confirmed the differential expression of 3 of these genes, namely Tumour necrosis factor induced protein 6, Gonadotrophin inducible transcription factor 1 and Ornithine decarboxylase antizyme inhibitor 1. Comparison of differential gene expression patterns in male and female rats subjected to dehydration and in lactating rats has enabled the identification of common elements that are significantly enriched in gene classes with particular functions. Two of these are related to the requirement for increased protein synthesis and hormone delivery in the physiologically stimulated SON (translation initiation factor activity and endoplasmic reticulum-Golgi intermediate compartment respectively), whilst others are consistent with concept of SON morphological plasticity (collagen fibril organisation, extracellular matrix organization and biogenesis, extracellular structure organization and biogenesis and homophilic cell adhesion). We suggest that the genes co-ordinately regulated in the SON as a consequence of dehydration and lactation form a network that mediates the plastic processes operational in the physiologically activated SON.
Transcriptomic analysis of the osmotic and reproductive remodeling of the female rat supraoptic nucleus.
Sex, Specimen part, Treatment
View Samples