Gastrocnemius muscle biopsies were obtained from 15 health older adults without peripheral artery disease (PAD), 20 PAD patients with intermittent claudication, and 16 patients with critical limb ischemia undergoing limb amputation. Gene expression analysis was performed using RNA sequencing analysis. Overall design: Examination of gene expression differences across the clinical spectrum of PAD (healthy vs. claudicant vs. critical limb ischemia)
Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants.
Specimen part, Disease, Subject
View SamplesOxaliplatin (oxPt) resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Here, we have used in vitro models to show that miR-625-3p functionally induces oxPt resistance in CRC cells, and have identified signalling networks affected by miR-625-3p. The p38 MAPK activator MAP2K6 was shown to be a direct target of miR-625-3p, and, accordingly, was downregulated in patients not responding to oxPt therapy. miR-625-3p resistance could be reversed in CRC cells by anti-miR-625-3p treatment and by ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, by reducing p38 MAPK signalling using either siRNA technology, chemical inhibitors to p38 or by ectopic expression of dominant negative MAP2K6 protein we induced resistance to oxPt. Transcriptome, proteome and phosphoproteome profiles revealed inactivation of MAP2K6-p38 signalling as one likely mechanism a possible driving force behind of oxPt resistance. Our study shows that miR-625-3p induces oxPt resistance by abrogating MAP2K6-p38 regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells.
Subject
View SamplesInflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent complex patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs.
High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes.
Age
View SamplesPBRM1 was found to be mutated in a high percentage of clear cell RCCs. We performed knockdown of PBRM1 via siRNA and compared with scrambled control in three different RCC cell lines.
Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma.
Specimen part, Cell line, Treatment
View SamplesHumoral responses of mice specifically deleted for Moz (a histone acetyltransferase) or c-Myb (a transcription factor) in B cells were aberrant. RNA-sequencing analysis was performed to assess gene expression differences compared to wild-type controls in germinal center B cells or plasmablasts. Overall design: Moz f/f Aicda1-Cre, Aicda1-Cre, Myb f/f Cd23-Cre, Mybf/f (no cre) mice were immunized with NP-KLH precipitated in alum and germinal center B cells were sort-purified. Secondary plasmablasts were sort-purified from immunized mice boosted with NP-KLH in PBS (Myb experiment). Two independent experiments were conducted.
Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
No sample metadata fields
View SamplesSystematic somatic mutation screening of 4000 genes in human clear cell renal cell carcinoma. Information on corresponding somatic mutations in each sample can be found at http://www.sanger.ac.uk/genetics/CGP/Studies/.
Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
No sample metadata fields
View Samples15-25% of breast cancers (BC) show ERBB2-amplification and overexpression of the encoded ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs may help understand their behavior and design new therapeutic strategies. In this study, we defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. We first identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, we identified 17 genome regions affected by copy number aberration (CNA). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-postive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2-amplicon was different in inflammatory (IBC) and non inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. We have shown that ERBB2 BCs are heterogeneous and identified genomic features that may be useful in the design of therapeutical strategies
Genome profiling of ERBB2-amplified breast cancers.
No sample metadata fields
View SamplesC.pn potentiated hyperlipidemia-induced inflammasome activity in cultured macrophages and in foam cells in atherosclerotic lesions of Ldlr/ mice. We discovered that C.pn-induced extracellular IL-1 triggers a negative feedback loop to inhibit GPR109a and ABCA1 expression and cholesterol efflux leading to accumulation of intracellular cholesterol and foam cell formation. Gpr109a and Abca1 were both upregulated in plaque lesions in Nlrp3/ mice in both hyperlipidemic and C.pn infection models.
Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1β Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MAFG is a transcriptional repressor of bile acid synthesis and metabolism.
Treatment
View Samples