Background: Identification and purification of cancer stem cells (CSCs) lead to new therapeutic targets; however, there has been no study to identify and isolated pancreatic neuroendocrine tumor (pNET) CSC. Therefore the clinical significance and its target remain unknown. This study aimed to identify pNET CSCs and characterize therapeutic candidate for pNET CSCs. Methods: We isolated CSCs sorting by ALDH activity in pNET surgical section and cell lines. We verified whether these cells have the property of stemness in vivo and in vitro. Additionally in order to acquire CSC gene profile, genome-wide gene expression profiles were investigated using a microarray technique. Results: ALDHhigh cells, but not control bulk cells, formed spheres, proliferated in hypoxia as well as normoxia and promoted cell motility, which are features of CSCs. Injection of as few as 10 ALDHhigh cells led to subcutaneous tumor formation, and 105 ALDHhigh cells established metastases but not control bulk cells in mice. Comprehensive gene expression analysis revealed that genes associated with mesenchymal stem cell, including CD73, and epithelial-mesenchymal transition (EMT) were overexpressed in ALDHhigh cells. APCP, which is CD73 inhibitor, inhibited sphere formation and cell motility in ALDHhigh cells in vitro, and tumor growth inhibition were observed in ALDHhigh cells in vivo. Conclusions: We identified ALDHhigh cells of pNET and elucidated that they have stemness property. Furthermore we identified CD73 as a target of ALDHhigh cells. CD73 is a promising novel target of pNET CSCs.
CD73 as a therapeutic target for pancreatic neuroendocrine tumor stem cells.
Cell line
View SamplesCancer cells have wide variety of gene expression profile. The objective of the study is to reveal the cancer-associated gene expression profile.
Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition.
Specimen part
View SamplesWe found that LSD1 inhibition by a monoamine oxidase inhibitor, tranylcypromine (TC), could enhance fetal gamma globin expression.
Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction.
Treatment
View SamplesPurpose: Pancreatic neuroendocrine tumors (PanNETs) have considerable malignant potential. Frequent somatic mutations and loss of DAXX protein expression have been frequently found in PanNETs. DAXX is known as a transcriptional repressor, however, molecular functions underlying loss of DAXX remain unclear in PanNETs.
Tumor suppressor functions of DAXX through histone H3.3/H3K9me3 pathway in pancreatic NETs.
Treatment
View SamplesHuman mesenchymal stem cells are expected to be a useful tool for cellular therapy. We used microarrays to detail the gene expression profiles and selected candidate biomarkers that indicate the culture stage of the cells.
Gene expression profiling of human mesenchymal stem cells for identification of novel markers in early- and late-stage cell culture.
No sample metadata fields
View SamplesHuman mesenchymal stem cells (hMSCs), which are multipotent cells to differentiate into several cell types, are expected to be a useful tool for cellular therapy. In some clinical settings, hMSCs have immuno-suppressive effects for GVHD (Graft-versus-host disease) and are expanded in vitro before application. To find biomarkers that indicate the culture stage of hMSCs, we performed microarray analysis for hMSCs derived from bone marrow, using Affymetrix GeneChip Human Genome U133 Plus 2.0 (54,613 probe sets).
Gene expression profiling of human mesenchymal stem cells for identification of novel markers in early- and late-stage cell culture.
No sample metadata fields
View SamplesAnti-angiogenic therapy is initially effective for several solid tumors including hepatocellular carcinoma (HCC); however, they finally relapse and progress, resulting in poor prognosis. We here established in vivo drug-tolerant subclones of human HCC cells by long-term treatment with vascular endothelial growth factor receptor (VEGFR) inhibitor and serial transplantation in immunocompromised mice (total 12 months), and then compared them with the parental cells in molecular and biological features. Gene expression profiles elucidated a G-actin monomer binding protein thymosin 4 (T4) as one of the genes enriched in the resistant cancer cells relative to the initially sensitive ones. Highlighting epigenetic alterations involved in drug resistance, we revealed that T4 could be aberrantly expressed following demethylation of DNA and active modification of histone H3 at the promoter region. Ectopic overexpression of T4 in HCC cells could significantly enhance sphere-forming capacities and infiltrating phenotypes in vitro, and promote growth of tumors refractory to the VEGFR mutltikinase inhibitor sorafenib in vivo. Clinically, sorafenib failed to improve the progression-free survival in patients with T4-high HCC, indicating that T4 expression could be available as a surrogate marker of susceptibility to this drug. This study suggests that T4 expression triggered by epigenetic alterations could contribute to the development of resistance to anti-angiogenic therapy by the acquisition of stemness, and that epigenetic control might be one of the key targets to regulate the resistance in HCC.
Acquired Resistance with Epigenetic Alterations Under Long-Term Antiangiogenic Therapy for Hepatocellular Carcinoma.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
Specimen part, Cell line
View SamplesHepatocellular carcinoma (HCC) is a heterogeneous disease with a variety of etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multifocal recurrence. Comprehensive molecular evaluation of HCC by multiplatform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying DNA hypermethylation; and (3) metabolic syndrome-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly discriminated HCC with intrahepatic metastasis (IM) from multicentric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not linked to the IM/MC diagnosis, but rather the integrated classification. Thus, identification of these HCC subtypes provides insights into patient stratification and opportunities for therapeutic development.
Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
Specimen part
View SamplesHepatocellular carcinoma (HCC) is a heterogeneous disease with a variety of etiological factors, and ranks as the second leading cause of cancer-related mortality worldwide due to multifocal recurrence. Comprehensive molecular evaluation of HCC by multiplatform analysis defined three major subtypes: (1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying DNA hypermethylation; and (3) metabolic syndrome-associated tumors, which included an immunogenic subgroup characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis explicitly discriminated HCC with intrahepatic metastasis (IM) from multicentric HCC (MC), the phenotypic similarity between the primary and recurrent tumors was not linked to the IM/MC diagnosis, but rather the integrated classification. Thus, identification of these HCC subtypes provides insights into patient stratification and opportunities for therapeutic development.
Comprehensive molecular and immunological characterization of hepatocellular carcinoma.
Specimen part, Cell line
View Samples