Global, genomic responses of erythrocytes to infectious agents have been difficult to measure, because these cells are e-nucleated. We have previously demonstrated that in vitro matured, nucleated erythroblast cells at the orthochromatic stage can be efficiently infected by the human malaria parasite Plasmodium falciparum. We now show that infection of orthochromatic cells induces change in 609 host genes. 592 of these transcripts are up-regulated and associated with metabolic and chaperone pathways unique to P. falciparum infection, as well as a wide range of signaling pathways that are also induced in related apicomplexan infections of mouse hepatocytes or human fibroblast cells. Our data additionally show that polychromatophilic cells, which precede the orthochromatic stage and are not infected when co-cultured with P. falciparum, up-regulate a small set of 35 genes, 9 of which are associated with pathways of hematopoiesis and/or erythroid cell development. These data unexpectedly predict that blood stage P. falciparum may induce host responses common to infections of other pathogens. Further P. falciparum may modulate gene expression in bystander erythroblasts and thus influence pathways of erythrocyte development.
P. falciparum modulates erythroblast cell gene expression in signaling and erythrocyte production pathways.
Specimen part
View SamplesNiemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional neurological, lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1-/- mice (Npc1nih)relative to Npc1+/- at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates for the neurological disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gauchers disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1-/- as well as Balb/c Npc1nmf164 mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1-/- mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry.
Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.
Age, Specimen part, Subject
View SamplesDramatic changes of gene expressions are known to occur in human endometrial stromal cells (ESC) during decidualization. The changes in gene expression are associated with changes of chromatin structure, which are regulated by epigenetic mechanisms such as histone modifications. Here, we investigated genome-wide changes in histone modifications and mRNA expressions associated with decidualization in human ESC using chromatin immunoprecipitation (ChIP) combined with next-generation sequencing. ESC were incubated with estradiol and medroxyprogesterone acetate for 14 days to induce decidualization. The ChIP-sequence data showed that induction of decidualization increased H3K27ac and H3K4me3 signals in many genomic regions but decreased in only a few regions. Most (80%) of the H3K27ac-increased regions and half of the H3K4me3-increased regions were located in the distal promoter regions (more than 3 kb upstream or downstream of the transcription start site). RNA-sequence showed that induction of decidualization up-regulated 881 genes, 223 of which had H3K27ac- or H3K4me3-increased regions in the proximal and distal promoter regions. Induction of decidualization increased the mRNA levels of these genes more than it increased the mRNA levels of genes without H3K27ac- or H3K4me3-increased regions. Pathway analysis revealed that up-regulated genes with the H3K27ac- or H3K4me3-increased regions were associated with insulin signaling. These results show that histone modification statuses genome-widely change in human ESC by induction of decidualization. The main changes of histone modifications are increases of H3K27ac and H3K4me3 in both the proximal and distal promoter regions, which are involved in the up-regulation of gene expression that occurs during decidualization. Overall design: mRNA profiles of human endometrial stromal cells with and without EP inductions for 2 individuals. (EP induction: induction with estradiol (10-8 M) and medroxyprogesterone acetate (10-6 M))
Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells.
No sample metadata fields
View SamplesDetermine allele level expression in hybrid mice of different ages Overall design: RNASeq - HybridMouseDRN
Diverse Non-genetic, Allele-Specific Expression Effects Shape Genetic Architecture at the Cellular Level in the Mammalian Brain.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas.
Sex, Specimen part, Disease, Disease stage
View SamplesProfiles of genome-wide DNA methylation were investigated in leiomyomas and in myometrium with and without leiomyomas. Profiles of DNA methylation in the myometrium with and without leiomyomas were quite similar while those in leiomyomas were distinct.
Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas.
Sex, Specimen part, Disease, Disease stage
View SamplesEpiblast stem cells (EpiSCs) were derived from the epiblast or the ectoderm (epi/ect) of pre-gastrula stage to late-bud stage mouse embryos. To identify if the EpiSCs retain any original stage specific characteristics or which developmental stage of epi/ect they most closely related to, we performed microarray analysis to compare the gene expression profile of multiple EpiSC lines with that of epi/ect of 7 different stages.
The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak.
Specimen part
View SamplesWhen assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms'' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1+CD133- marks SIX2+ multipotent renal stem cells transiting to NCAM1+CD133+ differentiating segment-specific SIX2- epithelial progenitors and NCAM1-CD133+ differentiated nephron cells. In tumorigenesis, NCAM1+CD133- marks SIX2+ blastema that includes the ALDH1+ WT cancer stem/initiating cells, while NCAM1+CD133+ and NCAM1-CD133+ specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1+ nephron stem cells in normal and malignant nephrogenesis. Overall design: Human fetal kidney mRNA profiles of 3 cell populations (NCAM1+/CD133-, NCAM+/CD133+, NCAM-/CD133+) were generated by deep sequencing using Illumina HiSeq.
Dissecting Stages of Human Kidney Development and Tumorigenesis with Surface Markers Affords Simple Prospective Purification of Nephron Stem Cells.
No sample metadata fields
View SamplesThe extent to which carbon flux is directed towards fermentation vs. respiration differs between cell types and environmental conditions. Understanding the basic cellular processes governing carbon flux is challenged by the complexity of the metabolic and regulatory networks. To reveal the genetic basis for natural diversity in channeling carbon flux, we applied Quantitative Trait Loci analysis by phenotyping and genotyping hundreds of individual F2 segregants of budding yeast that differ in their capacity to ferment the pentose sugar xylulose. Causal alleles were mapped to the RXT3 and PHO23 genes, two components of the large Rpd3 histone deacetylation complex. We show that these allelic variants modulate the expression of SNF1/AMPK-dependent respiratory genes. Our results suggest that over close evolutionary distances, diversification of carbon flow is driven by changes in global regulators, rather than adaptation of specific metabolic nodes. Such regulators may improve the ability to direct metabolic fluxes for biotechnological applications. Overall design: mRNA profiles of S. cerevisiae strain BY4741 with either the RXT3 or PHO23 genes either deleted, replaced by S. cerevisiae T73 allele or replaced by S. cerevisiae PHO23 allele
Natural Diversity in Pentose Fermentation Is Explained by Variations in Histone Deacetylases.
Cell line, Subject
View SamplesUsing a combination of cell sorting and microarray analysis, we identified almost 200 genes as having a high level of expression in the notochord.
Integrated microarray and ChIP analysis identifies multiple Foxa2 dependent target genes in the notochord.
Sex
View Samples