TWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. Our previous work showed that, in the absence of TWIST1, some cells within the cranial mesoderm adopt an abnormal epithelial configuration. Here, we show by transcriptome analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. By ChIP-seq in a cell line model of a TWIST1-dependent mesenchymal state, we identified, among the downstream genes, three direct transcriptional targets of TWIST1: Ddr2, Pcolce and Tgfbi. Our findings show that the mesenchymal properties of the cranial mesoderm is likely to be regulated by a network of TWIST1 targets genes that influence the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures.
Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.
Specimen part
View SamplesTWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. Our previous work showed that, in the absence of TWIST1, some cells within the cranial mesoderm adopt an abnormal epithelial configuration. Here, we show by transcriptome analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. By ChIP-seq in a cell line model of a TWIST1-dependent mesenchymal state, we identified, among the downstream genes, three direct transcriptional targets of TWIST1: Ddr2, Pcolce and Tgfbi. Our findings show that the mesenchymal properties of the cranial mesoderm is likely to be regulated by a network of TWIST1 targets genes that influence the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures.
Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.
Specimen part
View SamplesTWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. Our previous work showed that, in the absence of TWIST1, some cells within the cranial mesoderm adopt an abnormal epithelial configuration. Here, we show by transcriptome analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. By ChIP-seq in a cell line model of a TWIST1-dependent mesenchymal state, we identified, among the downstream genes, three direct transcriptional targets of TWIST1: Ddr2, Pcolce and Tgfbi. Our findings show that the mesenchymal properties of the cranial mesoderm is likely to be regulated by a network of TWIST1 targets genes that influence the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures.
Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.
Specimen part
View SamplesTo characterize the molecular properties of the EpiSCsS/F, we compared the transcriptome of EpiSCsS/F with that of EpiSCs and that of the epiblast cells sampled from embryos (and different parts of the embryo) at the cavity stage (E5.5) to early bud stage (E7.5) Overall design: Examination of the gene expression profiles of two type of stem cells and 10 embryonic tissue samples
Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head. Overall design: Total RNA obtained from FLAG-Lhx1 and FLAG-Lhx1 mutant embryoid bodies differentiated over 2 days with or without doxycycline treatment for 16 hours. There are three replicates per condition.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part, Subject
View SamplesDevelopment of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of Lhx1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting Lhx1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.
A gene regulatory network anchored by LIM homeobox 1 for embryonic head development.
Specimen part
View SamplesWe analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from cardiogenic or hemogenic mesoderm. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified novel candidate regulators of mesodermal lineage determination. HOPX, a non-DNA binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. We used HOPX reporter and knockout hESCs, as well as hopx loss of function studies in zebrafish, to show the requirement of HOPX in vivo and in vitro in hemato-endothelial lineage specification. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis acting at least in part through suppression of Wnt/ß-catenin signaling. Single cell RNA-seq data during mouse hematopoietic development in vivo confirm a role for HOPX in hematopoietic fate. Taken together, we show that HOPX is a novel regulator of hemato-endothelial fate specification in vitro and in vivo that functionally regulates Wnt signaling to modulate primitive hematopoiesis. Overall design: 2 biological replicates were isolated from cardiac progenitor cells (CPCs) and endothelial populations derived from cardiogenic mesoderm (C-ECs) and hemogenic mesoderm (H-ECs). RNA-seq and ChIP-seq (H3K4me3 and H3K27me3) was performed for each replicate.
Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation.
No sample metadata fields
View SamplesDramatic changes of gene expressions are known to occur in human endometrial stromal cells (ESC) during decidualization. The changes in gene expression are associated with changes of chromatin structure, which are regulated by epigenetic mechanisms such as histone modifications. Here, we investigated genome-wide changes in histone modifications and mRNA expressions associated with decidualization in human ESC using chromatin immunoprecipitation (ChIP) combined with next-generation sequencing. ESC were incubated with estradiol and medroxyprogesterone acetate for 14 days to induce decidualization. The ChIP-sequence data showed that induction of decidualization increased H3K27ac and H3K4me3 signals in many genomic regions but decreased in only a few regions. Most (80%) of the H3K27ac-increased regions and half of the H3K4me3-increased regions were located in the distal promoter regions (more than 3 kb upstream or downstream of the transcription start site). RNA-sequence showed that induction of decidualization up-regulated 881 genes, 223 of which had H3K27ac- or H3K4me3-increased regions in the proximal and distal promoter regions. Induction of decidualization increased the mRNA levels of these genes more than it increased the mRNA levels of genes without H3K27ac- or H3K4me3-increased regions. Pathway analysis revealed that up-regulated genes with the H3K27ac- or H3K4me3-increased regions were associated with insulin signaling. These results show that histone modification statuses genome-widely change in human ESC by induction of decidualization. The main changes of histone modifications are increases of H3K27ac and H3K4me3 in both the proximal and distal promoter regions, which are involved in the up-regulation of gene expression that occurs during decidualization. Overall design: mRNA profiles of human endometrial stromal cells with and without EP inductions for 2 individuals. (EP induction: induction with estradiol (10-8 M) and medroxyprogesterone acetate (10-6 M))
Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells.
No sample metadata fields
View Samples