hEPI-NCSC are neural crest derived multipotent somatic stem cells that persist in hair follicle stem cell niche, termed the bulge, and persist into adulthood (Clewes O et al, 2011). The purpose of this project was to generate two gene expression profiles, (1) of ex vivo expanded hEPI-NCSC (XP) and (2) of cells, whihc after expansion were grown in a culture medium (NP1), which was empirically designed to pre-differentiate the multipotent stem cells into neural stemcell like cells.
Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons.
Sex, Specimen part
View SamplesIntracranial B16 melanoma tumors isolated from C57Bl6 mice were analyzed by mRNAseq. Four experimental groups were analyzed: (1) Mice with intracranial tumors receiving IgG; (2) Mice with intracranial tumors receiving anti-PD-1 plus anti-CTLA-4 therapy; (3) Mice with intracranial plus extracranial tumors receiving IgG; (4) Mice with intracranial plus extracranial tumors receiving anti-PD-1 plus anti-CTLA-4 therapy. Taggart et al., PNAS 2018; Overall design: mRNAseq profiles of intracranial B16 tumours at day 9 post-cancer cell implantation were generated for 4 different experimental groups (biological triplicates)
Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8<sup>+</sup> T cell trafficking.
Specimen part, Cell line, Treatment, Subject
View SamplesPurpose: ATG41 is involved both in autophagy and zinc-deficient growth. The goal of this study is to compare transcriptomic profiles of wild-type and atg41? strains to discover autophagy-independent molecular phenotypes for the mutant. The atg1? mutant is a control for autophagy activity. Methods: Wild-type and mutant yeast were grown to mid-log phase in replete medium and shifted to zinc-deficient medium for 8 hours, after which, cells were harvested for RNA sequencing to detect differential gene expression. Results: Gene expression data for virtually every gene (~6,000) was obtained with ~12,000,000 reads per sample. Differential gene expression analysis showed that several hundred genes were differentially experessed in the atg41? mutant (greater than 2-fold) at an FDR of 0.5. Conclusions: Most strikingly, we found that the atg41? mutant transcriptome shows signs that sulfur metabolism is distrupted during zinc-deficinet growth. Expression of Met4 gene targets is increased. Overall design: mRNA from wild-type, atg1?, and atg41? yeast strains was prepared from zinc-deficient cultures in quadruplicate and sequenced. Single-end, 100bp sequencing was performed, using v4 SBS chemistry on an Illumina HiSeq2500 sequencer.
An Autophagy-Independent Role for <i>ATG41</i> in Sulfur Metabolism During Zinc Deficiency.
Cell line, Subject
View SamplesThe goal was to identify genes that are differentially expressed between the bone marrow-derived CD11b+ myeloid cells infiltrating intracranial tumors and the peripheral myeloid cells (e.g. infiltrating the spleen and bone marrow).
Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell-Specific Gene Promoters.
Age, Specimen part
View SamplesLeukemia stem cells (LSCs) are found in most aggressive myeloid diseases and contribute to therapeutic resistance. Genetic and epigenetic alterations cause a dysregulated developmental program in leukemia. The MSI2 RNA binding protein has been previously shown to predict poor survival in leukemia. We demonstrate that the conditional deletion of Msi2 results in delayed leukemogenesis, reduced disease burden and a loss of LSC function. Gene expression profiling of the Msi2 ablated LSCs demonstrates a loss of the HSC/LSC and an increase in the differentiation program. The gene signature from the Msi2 deleted LSCs correlates with survival in AML patients. MSI2’s maintains the MLL self-renewal program by interacting with and retaining efficient translation of Hoxa9, Myc and Ikzf2. We further demonstrate that shRNA depletion of the MLL target gene Ikzf2 also contributes to MLL leukemia cell survival. Our data provides evidence that MSI2 controls efficient translation of the oncogenic LSC self-renewal program and a rationale for clinically targeting MSI2 in myeloid leukemia. Overall design: RNA-Seq was performed on sorted c-Kit high leukemic cells from 2 Msi2 -/- and 2 Msi2 f/f mice.
Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program.
No sample metadata fields
View SamplesAnalysis of musashi2 contribution towards maintaing myelodysplastic phenotype in stem cells. We find that musashi2 plays an integral role in maintaining the myelodysplastic phenotype Overall design: Control, NUP98-HOXD13; NHD13, NHD13/MSI2 bone marrow was transplated allowed to engraft into lethally irradiated congenic CD45.1 animals. Mice were then fed doxycycline to induce MSI2 overexpression. Mice were induced for 3 months and then CD45.2 Lineage lo Sca1+ and Kit+ cells were sorted and then assessed for gene expression.
MSI2 is required for maintaining activated myelodysplastic syndrome stem cells.
Age, Specimen part, Cell line, Subject
View SamplesmRNA expression from adenomas of patients with Lynch Syndrome and Familial Adenomatous Polyposis Overall design: 24 adenoma samples analyzed
Immune Profiling of Premalignant Lesions in Patients With Lynch Syndrome.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Functional screen of MSI2 interactors identifies an essential role for SYNCRIP in myeloid leukemia stem cells.
Specimen part, Cell line
View SamplesThe c-Myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define the role of c-Myb in human hematopoietic lineage commitment, we studied the effects of its silencing during the commitment of human CD34+ Hematopoietic stem/progenitor cells. In CD34+ cells c-Myb silencing determined a cell cycle arrest in G0/G1 phase which strongly decreased the clonogenic efficiency, togheter with a reduction of erythroid colonies coupled with an increase of the macrophage and megakaryocyte ones. Moreover, morphological and flow cytometry data supported the preferential macrophage and megakaryocyte differentiation of c-Myb-silenced CD34+ cells. Taken together our data indicate that c-Myb is essential for the commitment along the erythroid and granulocyte lineages but not for the macrophage and megakaryocyte differentiation. Gene expression profiling of c-Myb-silenced CD34+ cells identified some potential c-Myb targets which can account for these effects, to study by Chromatin Immunoprecipitation and Luciferase Reporter Assay.
c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression.
No sample metadata fields
View SamplesThe c-Myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define the role of c-Myb during the terminal differentiation of hematopoietic precursors, we studied the effects of its silencing in human primary CD14-myeloblasts, which maintain a granulo-monocyte differentiation bipotentiality. c-Myb-silenced myeloblasts were blocked in the G1 phase of the cell cycle at 24 hours post-nucleofection and subsequently were forced towards macrophage differentiation, as demonstrated by immunophenotypic and morphological analysis. Indeed, c-Myb-silenced CD14- cells differentiate to macrophage even after the treatment with ATRA 10-6 M, demonstrating that the c-Myb knockdown strongly impairs the ability of myeloblasts to differentiate to granulocytes. Gene expression profiling of c-Myb-silenced CD14- cells identified some potential c-Myb targets that can account for these effects.
c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression.
Specimen part, Time
View Samples