The Ca2+ oscillations initiated by the fertilizing sperm (but terminating concomitant with pronucleus formation) apparently ensure that the events constituting egg activation occur in the correct temporal order; early events (e.g., cortical granule exocytosis) require fewer oscillations than later events (e.g., recruitment of maternal mRNA). Whether the Ca2+ signaling events impact long-term development, in particular development to term, is unknown. Using fertilized eggs that have undergone the first few Ca2+ oscillations, we developed procedures that result either in inhibiting or stimulating the natural pattern of Ca2+ signaling of inseminated eggs. Although the incidence of development to the blastocyst stage is unaltered by these procedures, fewer offspring are born following embryo transfer, indicating that developmental competence of the blastocysts is reduced. Interestingly, embryo transfer experiments reveal that when the natural regime of Ca2+ oscillations is precociously interrupted, the incidence of implantation is compromised whereas hyper-stimulation of Ca2+ signaling events compromises post-implantation development. Moreover, although there was no major difference in the overall growth rates of the offspring, those obtained following hyper-stimulation exhibited a far greater variability in their weight. Analysis of global patterns of gene expression by microarray analysis revealed that approximately 20% of the transcripts are mis-regulated when too few oscillations are experienced by the embryo and EASE analysis indicates that genes preferentially involved in RNA processing and polymerase II transcription are differentially affected. In addition, a set of genes involved in cell adhesion is also mis-expressed and could thus be mechanistically linked to the observed reduced implantation. Only about 3% of the transcripts were mis-regulated following hyper-stimulation, and EASE analysis indicates that genes preferentially involved in metabolism are differentially affected. In toto, these results indicate that a range Ca2+ signaling events following fertilization (an excess or reduction) has long-term effects on both gene expression and development to term.
Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term.
No sample metadata fields
View SamplesGene expression profile based classification of colonic diseases are suitable for identification of diagnostic mRNA expression patterns which can establish the basis of a new molecular biological diagnostic method
Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results.
No sample metadata fields
View SamplesThe whole-genome oligonucleotide microarray analysis of peripheral blood samples can contribute to the determination of distant blood markers of local pathophysiological alterations in colorectal diseases. These markers can lead to alternative screening procedures.
Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results.
No sample metadata fields
View SamplesThe whole-genome oligonucleotide microarray analysis of laser microdissected human colonic epithelial cells can contribute to determination of disease-specific expression alterations in colonic epithelial cells and to localize the origin the expression changes measured in whole biopsy samples.
Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor.
Specimen part, Disease, Disease stage
View SamplesThe whole-genome oligonucleotide microarray analysis of NS398-treated HT29 colon adenocarcinoma cells samples can give an insight into global molecular background of selective COX2 inhibitor administration in order to find other target molecules and pathways influenced by NS398 selective COX2 inhibitor treatment in the epithelial cells.
Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor.
Cell line, Treatment
View SamplesThe immune system generates pathogen-tailored responses. The precise innate immune cell types and pathways that direct robust adaptive immune responses have not been fully characterized. By using fluorescent pathogens combined with massively parallel single cell RNA-seq, we comprehensively characterized the initial 48 hours of the innate immune response to diverse pathogens. We found that across all pathogens tested, most of the lymph node cell types and states showed little pathogen-specificity. In contrast, the rare antigen-positive cells displayed pathogen-specific transcriptional programs as early as 24 hours after immunization. In addition, mycobacteria activated a specific NK driven IFN? response. Depletion of NK cells and IFN? showed that IFN? initiated a monocyte specific signaling cascade, leading to production of major chemokines and cytokines that promote Th1 development. Our systems immunology approach sheds light on early events in innate immune responses and may help further development of safe and efficient vaccines. Overall design: Transcriptional profiling of single cells from pathogen-injected mouse auricular lymph nodes, generated from deep sequencing of thousands of cells, sequenced in several batches on illumina Nextseq500. For all experiments, innate immune lymph node cells were sorted accordng to the markers indicated in Samples' Characteristics "selection marker" field into 384-well MARS-seq2.0 cell capture plates. Sorting of antigen-carrying cells (Ag+) was based on the AF488-fluorescence of the pathogens injected. Different pathogens and time points were used, as indicated in the Samples' Characteristics "infection" and "time points" fields.
Single-Cell Analysis of Diverse Pathogen Responses Defines a Molecular Roadmap for Generating Antigen-Specific Immunity.
Specimen part, Cell line, Subject, Time
View SamplesT cell development and selection is orchestrated in the thymus by a specialized niche of diverse stromal populations. By transcriptional single cell sorting, we de novo characterize the entire stromal compartment of the thymus. We identified dozens of cell states within the thymic stroma, with thymic epithelial cells (TEC) showing the highest degree of heterogeneity. Our analysis highlights four major medullary TEC (mTEC I-IV) populations, with distinct molecular functions, epigenetic landscapes and lineage regulators. Specifically, mTEC-IV constitutes a new and highly divergent TEC lineage with molecular characteristics of the gut chemosensory epithelial tuft cells. Mice deficient of Pou2f3, a tuft cells master regulator, resulted in complete and specific depletion of mTEC-IV, without affecting other TEC populations. Overall, our study comprehensively defines all stroma cells in the thymus and identifies a new TEC lineage associated with chemosensory properties that may potentially link the adaptive immune system to environmental and neurological signals. Overall design: Transcriptional profiling of single cells from the stroma of mouse thymus, generated from deep sequencing of tens of thousands of cells, sequenced in several batches on illumina Nextseq500
Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells.
Specimen part, Cell line, Treatment, Subject
View SamplesCell polarity is crucial for the maintenance of epithelial cell function and its loss may have an im-portant role in the development and progression of cancer. We here show that overexpression and cytoplasmic enrichment of the baso-lateral polarity complex protein Scribble (Scrib) correlates with poor prognosis of hepatocellular cancer (HCC) patients. Expression of the cytoplasmic ScribP305L in hepatocellular cells induces epithelial to mesenchymal transition (EMT) and supports HCC cell invasion in comparison to cells expressing membrane-localized ScribWT. ScribP305L induces AKT signalling through destabilization of the phosphatases phosphatase and tensin homolog (PTEN) and PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1). Moreover, cytoplasmic ScribP305L stimulates the expression of secreted protein acidic and cysteine rich (SPARC) de-pending on the AP1 constituents ATF2 and JunB, which drives HCC cell invasiveness. In vivo, combined hydrodynamic delivery of ScribP305L but not ScribWT and c-MYC initiates tumour for-mation in hepatocytes and cytoplasmic Scrib correlates with AKT phosphorylation, and AP1 ex-pression in human HCC tissues. Together, overexpression and mislocalization of Scrib represents an early event involved in the initiation and progression of liver cancer.
Cytoplasmic localization of the cell polarity factor scribble supports liver tumor formation and tumor cell invasiveness.
Cell line
View SamplesTo understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.
Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.
No sample metadata fields
View SamplesHuntington’s disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input and boosted cortically driven indirect pathway activity. Cyclic nucleotide signaling is impaired in HD models and PDE10 loss may represent a homeostatic adaptation to maintain signaling. Elevation of both cAMP and cGMP by PDE10 inhibition were required for rescue. Phosphoproteomic profiling of striatum in response to PDE10 inhibition highlighted plausible neural substrates responsible for the improvement. Early chronic PDE10 inhibition in Q175 mice showed improvements beyond those seen with acute administration after symptom onset, including partial reversal of striatal deregulated transcripts and the prevention of the emergence of HD neurophysiological deficits. Overall design: Transcriptional profiling of cortex and striatal tissue following chronic dosing of either vehicle or the PDE10A inhibitor PF-02545920 (0.32, 1 and 3.2 mg/kg po qd) in the Q175 homozygous knock-in mouse model of Huntington’s disease (dosing from 5-weeks to 9 months of age).
Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington's Disease Models.
Sex, Age, Specimen part, Cell line, Treatment, Subject
View Samples