Purpose: Because dexamethasone remains a key component of myeloma therapy, we wished to examine the correlation of baseline and relapse expression levels of the glucocorticoid receptor gene NR3C1 with other clinical features. Experimental Design: We investigated the clinical impact of gene expression profiling (GEP)derived expression levels of NR3C1 in 351 patients with GEP data available at baseline and in 130 with data available at relapse, among 668 subjects accrued to Total Therapy 2 (TT2).
Thalidomide in total therapy 2 overcomes inferior prognosis of myeloma with low expression of the glucocorticoid receptor gene NR3C1.
Disease, Treatment
View SamplesUncontrolled Transforming growth factor-beta (TGF) signaling promotes aggressive metastatic properties in late-stage breast cancers. However, how TGF-mediated cues are directed to induce late-stage tumorigenic events is poorly understood, particularly given that TGF has clear tumor suppressing activity in other contexts. Here we demonstrate that the transcriptional regulators TAZ and YAP (TAZ/YAP), key effectors of the Hippo pathway, are necessary to promote and maintain TGF-induced tumorigenic phenotypes in breast cancer cells. Interactions between TAZ/YAP, TGF-activated SMAD2/3, and TEAD transcription factors reveal convergent roles for these factors in the nucleus. Genome-wide expression analyses indicate that TAZ/YAP, TEADs and TGF-induced signals coordinate a specific pro-tumorigenic transcriptional program. Importantly, genes cooperatively regulated by TAZ/YAP, TEAD, and TGF, such as the novel targets NEGR1 and UCA1, are necessary for maintaining tumorigenic activity in metastatic breast cancer cells. Nuclear TAZ/YAP also cooperate with TGF signaling to promote phenotypic and transcriptional changes in non-tumorigenic cells to overcome TGF repressive effects. Our work thus identifies crosstalk between nuclear TAZ/YAP and TGF signaling in breast cancer cells, revealing novel insight into late-stage disease-driving mechanisms.
The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells.
Cell line, Treatment
View SamplesOur study identified long term salt stress treatment to induce symptoms similar to developmental senescence. In order to identify possible crosstalk components shared between developmental and salt-triggered senescence.
Salt stress and senescence: identification of cross-talk regulatory components.
Age, Specimen part, Treatment
View SamplesIn order to elucidate transcriptional and metabolic networks associated with Lys metabolism, we utilized developing seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor, however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the TCA cycle, whilst largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor, whilst suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally-inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.
Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.
No sample metadata fields
View SamplesTmem67 knock-out mouse model of Meckel-Gruber syndrome type 3 (MKS3, MIM #607361) and Joubert syndrome type (JBTS6, #610688): investigation into differential gene expression in the early post-natal (P0) cerebullum
Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects.
No sample metadata fields
View SamplesRegulatory T cells (Tregs) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. While Tregs possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any inter-relationship orcross-regulatory mechanisms exist that areused to orchestrate and control their utilization is unknown. Here we assessed the functional capacity of Tregs lacking the ability to secrete both interleukin-10 (IL-10) and IL-35, which individually are required for maximal Treg activity. Surprisingly, IL-10/IL-35-double deficient Tregswere fully functionalin vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (CTSE) expression, enhanced TRAIL (Tnfsf10)expression and soluble TRAIL release, rendering IL-10/IL-35-double deficient Tregsfunctionally dependent on TRAIL in vitro and in vivo. Lastly, while C57BL/6 Tregs are IL-10/IL-35-dependent, Balb/c Tregs, which express high levels of CTSE and enhanced TRAIL expression, are TRAIL-dependent.These data reveal that cross-regulatory pathways exist, which control the utilization of suppressive mechanisms,thereby providing Tregfunctional plasticity.
The plasticity of regulatory T cell function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesNotch1 is a key regulator of endothelial cell behaviour. This experiment was designed to identify genes regulated by Notch1 signaling in inflammatory activated mouse endothelial cells.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesProinflammatory activation of endothelial cells leads to recruitment of leukocytes by upregulation of adhesion molecules and presentation of chemoattractants. In response to such activation there is also a strong shift in the endothelial expression of Notch ligands, with downregulation of Dll4 and a upregulation of JAG1. To assess whether Jagged1 would affect the endothelial activation profile, we suppressed JAG1 expression during IL-1-induced activation by means of siRNA and performed a genome-wide transcriptome analysis. Our results show for the first time that Jagged1 modulates the transcription profile of activated endothelial cells and describe data that imply a role for Jagged1 in sharpening the inflammatory profile of the vasculature, giving it an edge towards leukocyte recruitment. These findings imply that Jagged1 might be a potential therapeutic target to attenuate inflammation and reduce tissue damage in inflammatory diseases.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View SamplesInflammatory activation of endothelial cells enables leukocyte recruitment to tissues. We here investigate how Notch1 signaling affects the transcriptional profile of inflammatory activated human umbilical vein cells.
Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.
Specimen part
View Samples