First, transcriptome analysis of purified CD31+ endothelial cells (ECs) from VEGF-treated sprouting embryoid bodies showed angiogenesis as the top affected category when Apelin is not present. In addition, loss of Apelin resulted in the modulation of pathways in ECs related to vasculogenesis, cell adhesion and response to hypoxia. Ingenuity Pathway Analysis (IPA) further identified VEGFR pathway as the main upstream regulator affected in endothelial cells, closely followed by the TGFß1 and TNF pathways, all reduced in the absence of Apelin. The most inhibited genes from the VEGFR pathway in the absence of Apelin are angiogenesis-related genes. Second, transcriptome analysis of CD31+/CD105+ ECs sorted from Apelin wild-type and Apln-depleted tumors found a significant decrease in processes associated with endothelial cell proliferation and angiogenesis in ECs sorted out of Apelin-depleted tumors using IPA. Further, IPA predicted a decrease in the adhesion of granulocytes and upstream regulator analysis showed that proteins of the TGF-superfamily, Inhibin-ßA and TGF-ß1, as well as C/EBP-alpha, ß-Catenin, ErbB2 and EGFR are predicted to be inhibited upstream regulators in ECs isolated from Apelin-depleted tumors. Overall design: Transcriptome analysis of purified CD31+ endothelial cells from VEGF-treated in vitro sprouting vessels in Apelin presence or absence. Transcriptome analysis of tumor endothelial cells from Apelin wild-type and depleted conditions. We report the application of Smart-Seq2 sequencing to populations of 100 endothelial cells, sorted from tumors that were Apelin wild-type or depleted.
Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy.
Sex, Specimen part, Cell line, Treatment, Subject
View Samples