In vitro cell cultures are frequently used to define the molecular background of drug resistance. In this study our major aim was to compare the gene expression signature of 2D and 3D cultured BRAFV600E mutant melanoma cell lines. We successfully developed BRAF-drug resistant cell lines from paired primary/metastatic melanoma cell lines in both 2D and 3D in vitro cultures. Using Affymetrix Human Gene 1.0 ST arrays, we determined the gene expression pattern of all cell lines. Our study highlights gene expression alterations that might help to understand the development of acquired resistance in melanoma cells in tumour tissue.
Gene Expression Signature of BRAF Inhibitor Resistant Melanoma Spheroids.
Specimen part
View SamplesWe generated four drug-resistant melanoma cell lines from paired primary/metastatic cell lines using PLX4720 and used for Affymetrix Human Gene 1.0 ST array
Molecular alterations associated with acquired resistance to BRAFV600E targeted therapy in melanoma cells.
Cell line
View SamplesPoly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme; however, recently metabolic properties had been attributed to it. Hereby, we examined the metabolic consequences of PARP-2 ablation in liver. Microarray analysis of PARP-2 knockdown HepG2 cells revealed the dysregulation of lipid and cholesterol metabolism genes. Induction of cholesterol biosynthesis genes stemmed from the enhanced expression of sterol-regulatory element binding protein (SREBP)-1. We revealed that PARP-2 is a suppressor of the SREBP-1 promoter, therefore ablation of PARP-2 induces SREBP-1 expression and consequently cholesterol synthesis. PARP-2-/- mice had higher SREBP-1 expression that was translated into enhanced hepatic and serum cholesterol levels.
Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels.
No sample metadata fields
View Samples