Thyroid gland is among the most sensitive organs to ionizing radiation. Whether low-dose radiation-induced papillary thyroid cancer (PTC) differs from sporadic PTC is yet unknown.
Gene signature of the post-Chernobyl papillary thyroid cancer.
No sample metadata fields
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesDefinitive hematopoiesis emerges via an endothelial-to-hematopoietic transition in the aorta-gonad-mesonephros (AGM) region and placenta. We have recently demonstrated the induction of hematopoietic stem/progenitors (HSPCs) from mouse fibroblasts with a combination of transcription factors progressing through endothelial-like precursors. Here, guided by our in vitro programming experiments we analyzed mouse placentas for the presence of the precursor phenotype. We identified a small population of CD34+ Sca1+Prom1+ (34PS) cells in mid-gestation placentas that do not express the pan-hematopoietic marker CD45. After isolation and culture 34PS cells acquire CD45 and generate large hematopoietic as well as cobblestone colonies. Prom1+ cells localize to the placental vascular labyrinth where HSPCs emerge. 34PS cells express markers associated with the hemogenic endothelium (CD31, Tie2, VE-Cadherin, Sox17, Runx1, Scl) and also markers identified by direct induction (Itga6/CD49f). This population is heterogeneous for the early hematopoietic marker CD41 and expresses the programming transcription factors. Remarkably, global gene expression profiles of placental 34PS cells correlate with AGM-derived hemogenic endothelium and fibroblast-derived precursors. Finally, when co-cultured with stroma placental 34PS cells give rise to B/T lymphoid cells as well as mixed colonies containing erythroid, myeloid and megakaryocytic cell lineages. In summary, we show that direct in vitro conversion provided a cell surface phenotype for the isolation of hemogenic precursors in vivo. Our findings provide insights into the specification of definitive hemogenesis in the placenta, in depth characterization of hemogenic precursor populations and the first evidence that direct in vitro conversion approaches can be used as a valuable tool to address basic developmental questions in vivo. Overall design: mRNAseq profiling on populations isolated by selected marker fluorescence activated cell sorting The 'E10_E12_HSPC_SingleCell_FPKM.txt.gz' contains the processed data for GSM1890353-GSM1890496.
Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells.
No sample metadata fields
View SamplesDuring development a specialised subset of endothelial cells, the haemogenic endothelium, undergo an endothelial-to-haematopoietic transition. This process critically involves the transcription factor Runx1. Here we have isolated a specific subpopulation of endothelial cells using a Runx1 enhancer-reporter transgenic mouse line (23GFP). We have compared the gene expression profile of this population to non-23GFP expressing endothelial cells and CD41 expressing haematopoietic progenitor cells to assess whether 23GFP expression marks a biologically distinct subset of endothelium.
Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level.
Specimen part
View SamplesCoinhibitory receptor blockade is a promising strategy to boost immunity against a variety of human cancers. However, many patients still do not benefit from this treatment, and responders often experience immune-related toxicities. These issues highlight the need for improved understanding of checkpoint blockade, but the T cell-intrinsic signaling pathways and gene expression profiles engaged during treatment are not well defined, particularly for combination approaches. We utilized a murine model of CD8+ T cell tolerance to address these issues.
Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells.
Specimen part
View SamplesMyogenic differentiation relies on Pax7 function. We used embryonic stem cells lacking functional Pax7 to follow its role in derivation of skeletal myoblasts.
Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene.
No sample metadata fields
View SamplesAn immune-restricted lymphomyeloid-primed progenitor with the capacity to contribute to both myeloid and lymphoid lineages in the developing embryo emerges prior to definitive HSCs. Overall design: Examination of fetal sorted lymphoid primed progentors and adult progenitors The fastq files are not provided at this time due to further analyses.
Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
BRAFV600E-Associated Gene Expression Profile: Early Changes in the Transcriptome, Based on a Transgenic Mouse Model of Papillary Thyroid Carcinoma.
Sex, Age
View SamplesBRAFV600E mutation is the most frequent molecular event in papillary thyroid carcinoma. The relation of this genetic alteration with the factors od poor prognosis has been reported as well as its influence on PTC gene signature. However human material disables distinction of cancer causes from its effect.
BRAFV600E-Associated Gene Expression Profile: Early Changes in the Transcriptome, Based on a Transgenic Mouse Model of Papillary Thyroid Carcinoma.
Sex, Age
View Samples