FoxO6 is expressed in the brain, craniofacial region and somite, but the precise role of FoxO6 in craniofacial development remain unknown. We found that FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull.
FoxO6 regulates Hippo signaling and growth of the craniofacial complex.
Specimen part
View SamplesThis experiment seeks to ascertain the transcriptional changes in the adult mouse hippocampus (CA1 subregion) that occur following viral knockdown of the histone variant H2A.Z. We are especially interested in understanding the role of this histone variant in memory formation and memory maintenance in the adult central nervous system. Overall design: This experiment includes 3 groups, each with 3 biological replicates. Samples S108, S109, and S110 are from controls infected with an AAV expressing a scrambled shRNA control. Samples A100, A101, A102, A104, A106, and A107 were infected with an AAV expressing an shRNA against H2A.Z. Samples A100, A101, and A102 were naive animals, whereas samples A104, A106, and A107 were trained in contextual fear conditioning.
Histone H2A.Z subunit exchange controls consolidation of recent and remote memory.
No sample metadata fields
View SamplesThe current study employed next-generation RNA sequencing to examine gene expression related to brain aging and cognitive decline. Young and aged rats were trained on a spatial episodic memory task. Hippocampal regions CA1, CA3 and the dentate gyrus (DG) were isolated. Poly-A mRNA was examined using two different platforms, Illumina and Ion Proton. The Illumina platform was used to generate lists of genes that were differentially expressed across regions, ages, and in association with cognitive function. The gene lists were then retested using the Ion Proton platform. The results describe regional differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response related genes, particularly in the dentate gyrus. Finally, for the memory task used, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Overall design: The study contains a total of 10 young (5-6 months) and 24 aged (17-22 months) Fischer 344 male rats which were used to investigate expression patterns associated with aging and behavior. Prior to gene analysis, the animals were characterized on an episodic memory task across two academic institutions to test the reliability of the task (University of Florida: 5 young rats and 13 aged rats; University of Arizona: 5 young rats and 11 aged rats). Following total RNA isolation for the CA1, CA3 and DG regions, next-generation sequencing (NGS) libraries were prepared for two platforms, Illumina and Ion Proton. For both platforms, poly-A selection of mRNA was performed followed by library preparation protocols for each NGS system. In addition, whole transcriptome sequencing in Illumina was also performed using the ribominus method to investigate differential expression of additional RNA species across the hippocampus. This Series includes only the samples examined using the Ion Proton platform.
Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment.
No sample metadata fields
View SamplesThe current study employed next generation RNA sequencing using two different platforms (Illumina and Ion Proton) to examine gene expression differences related to brain aging, cognitive decline, and hippocampus subregions (CA1, CA3, DG). Young and aged rats were trained on a spatial episodic memory task. The results describe regional differences in gene expression and point to regional differences in vulnerability to aging. Aging was associated with increased expression of immune response related genes, particularly in the dentate gyrus. For the memory task, impaired performance of aged animals was linked to the regulation of Ca2+ and synaptic function in region CA1. Finally, we provided a transcriptomic characterization of the three subregions regardless of age or cognitive status, highlighting and confirming a correspondence between cytoarchitectural boundaries and molecular profiling. Overall design: Male Fisher 344 rats of two ages, young (5-6 months, total n = 10; n = 5 AZ, n = 5 FL) and aged (17-22 months, total n = 24; n = 11 AZ, n = 13 FL) were obtained from National Institute on Aging''s colonies (Taconic, FL; Charles River, AZ). Animals were maintained on a 12:12 hour light/dark schedule, and provided ad libitum access to food and water prior to the set shifting task. The Morris Water Maze test was conducted, and behavioural data were acquired with either Noldus EthoVision computer tracking software (Noldus Information Technology, (Leesburg, VA) in FL or AnyMaze (Wood Dale, IL) in AZ) and included path-length and time in the goal and opposite quadrants. Two weeks following water maze testing, rats were anesthetized with isoflurane (Piramal Healthcare), decapitated and the brain was rapidly removed. The hippocampus was isolated, a 1-2 mm slice was removed from the dorsal hippocampus, and the CA1, CA3 and dentate gyrus (DG) regions were dissected [1, 8]. The collected tissue was immediately frozen in liquid nitrogen and stored in -80ºC until processed.
Hippocampal Transcriptomic Profiles: Subfield Vulnerability to Age and Cognitive Impairment.
No sample metadata fields
View SamplesExpression data from 4T1 subclones derived from mammary fat pad tumors (MFP), axillary lymph node tumors (AxLN), and axillary lymph node-derived lung metastases (AxLN-LuM). In parallel, expression data, in the same subclones, of tail vein-derived (TV) lung metastases.
Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes.
No sample metadata fields
View SamplesCMPF is elevated in diabetes and is associated with impaired insulin secretion. We used microarrays to determine the effect of CMPF on gene expression in isolated islets.
The furan fatty acid metabolite CMPF is elevated in diabetes and induces β cell dysfunction.
Sex, Age, Specimen part, Treatment
View SamplesWe found that 5-Aza-dC/decitabine induces various prosurvival pathways (JAK-STAT-, NFkB-, MEK/ERK- and PI3K/AKTpathway) in cHL cell lines. Inhibition of these pathways with specific small molecular weight inhibitors potentiates the antitumor effect of 5-Aza-dC.
Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors.
Cell line
View SamplesThis dataset is composed of the unique patients (276; at the Day 1 timepoint) that are present in the six other GEO datasets published by Hector Wong and the Genomics of Pediatric SIRS and Septic Shock Investigators. This dataset thus includes all unique patients from GSE4607, GSE8121, GSE9692, GSE13904, GSE26378, and GSE26440. These are only from the Day 1 timepoint.
A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set.
Specimen part, Disease
View SamplesExamined the expression effects of supplementing Drosophila food on heart and nephrocyte complexes
Diet-Induced Podocyte Dysfunction in Drosophila and Mammals.
Sex, Specimen part, Treatment
View SamplesMitochondrial DNA (mtDNA) encodes essential components of the respiratory chain and loss of mtDNA leads to mitochondrial dysfunction and neurodegeneration. Mitochondrial transcription factor A (TFAM) is an essential component of mtDNA replication and a regulator of mitochondrial copy number in cells. Studies have shown that TFAM knockdown leads to mitochondrial dysfunction and respiratory chain deficiencies. ATP synthase is Complex V of the mitochondrial respiratory chain. It is driven by a proton gradient between the intermembrane space and the mitochondrial matrix and generates the majority of cellular ATP. The knockdown of coupling factor 6 (Cf6), one of the components of the proton channel F0, causes dysfunction in the complex, leading to mitochondrial dysfunction and respiratory chain deficiencies. Using gene expression analysis, we aimed to investigate the effects of mtDNA dysfunction in the CNS at the molecular level.
Mitochondrial retrograde signaling regulates neuronal function.
Specimen part
View Samples