Purpose: Klf5 plays a critical role in the mouse ocular surface (Kenchegowda et al., 2011. Dev Biol. 356:5-18). Here, we compare wild-type (WT) and Klf5-conditional null (Klf5CN) corneal gene expression at postnatal day-11 (PN11) and PN56 to identify the Klf5-target genes. Methods: Gene expression was compared using Affymetrix microarrays with QPCR validation. Transient transfection assays examined the effect of Klf5 on selected target gene promoter activities. Whole-mount corneal immunofluorescent staining examined neovascularization and CD45+ macrophage influx. Results: Expression of 714 and 753 genes was increased, and 299 and 210 genes decreased in PN11 and PN56 Klf5CN corneas, respectively, with 366 concordant increases, 72 concordant decreases and 3 discordant changes. Canonical pathway analysis identified 35 and 34 significantly (p<0.001) enriched pathways at PN11 and PN56, respectively, with 24 common pathways. PN56 Klf5CN corneas shared 327 increases and 91 decreases with the previously described Klf4CN corneas (Swamynathan et al., 2008. IOVS 49:3360-70). Angiogenesis and immune response-related genes were affected consistent with lymphangiogenesis and macrophage influx in Klf5CN corneas, respectively. Expression of 1574 genes was increased and 1915 decreased, in the WT PN56 compared with PN11 corneas. Expression of many collagens, matrix metalloproteinases and other extracellular matrix associated genes decreased in WT corneas between PN11 and PN56, while that of solute carrier family members increased. Conclusions: Differences in PN11 and PN56 corneal Klf5-target genes reveal dynamic changes in Klf5 functions during corneal maturation. Klf4- and Klf5-target genes do not overlap, consistent with their non-redundant roles in the mouse cornea.
Critical role of Klf5 in regulating gene expression during post-eyelid opening maturation of mouse corneas.
No sample metadata fields
View SamplesConditional disruption of Klf4 in the ectoderm-derived tissues of the eye results in defective cornea, conjunctiva and the lens.
Regulation of mouse lens maturation and gene expression by Krüppel-like factor 4.
Specimen part
View SamplesPurpose: To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 around eye opening stage when the goblet cells first appear.
Mouse conjunctival forniceal gene expression during postnatal development and its regulation by Kruppel-like factor 4.
No sample metadata fields
View SamplesPrevious in vitro studies in our lab have shown that CD24, a cell surface receptor, actively regulates lipid accumulation in adipocytes. But how CD24 regulates this process remains unknown. In order to answer this question, we initially tested to determine if CD24 regulates lipid accumulation by regulating glucose uptake in adipocytes in vitro. We observed that instead, CD24 caused the dysregulation of the expression of 134 genes as determined by DNA microarray analysis. We then validated the expression of select four genes, when CD24 is knocked down during the different stages of adipogenesis in 3T3-L1 pre-adipocytes in vitro. To further confirm the role of these genes, we then determined the expression patterns of these four genes in primary cells undergoing adipogenesis that were isolated from the epididymal and inguinal white adipose tissue depots of CD24 knockout mice. Surprisingly, we found that these genes were dysregulated in the inguinal but not the epididymal depot in vitro. Overall, the data presented here suggests that CD24 is necessary for select gene expression, but not glucose uptake, during adipogenesis in vitro.
CD24 is required for regulating gene expression, but not glucose uptake, during adipogenesis.
Cell line
View SamplesSudden death syndrome (SDS) caused by the fungal pathogen, Fusarium virguliforme, is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration that extends upto several nodes and internodes into the stem. Foliar SDS symptom is characterized by interveinal chlorosis and necrosis in leaves which finally curl and fall off, and in severe cases by flower, pod abscission and immature seed formation. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar (Williams 82) was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidial spores and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin could be important in establishing the biotrophic phase. Enzymes with hydrolytic and catalytic activities could play an important role in the transitioning of the pathogen from biotrophic to necrotrophic phase. Expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during late infection stage suggests cell wall degradation by some of these enzymes could be involved in root necrosis and establishing the necrotrophic phase in this pathogen. Overall design: RNA-seq data for Fusarium virguliforme Mont-1 germinating conidial spores, mycelia and soybean root tissue 3 and 5 days or 10 and 24 days post water incubation or infection with Fusarium virguliforme Mont-1 conidial spores. Raw data for Fusarium virguliforme Mont-1 germinating conidial spores and mycelia are not available due to server failure.
Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants.
Specimen part, Subject
View SamplesFunctional and structural dysfunction of the blood brain barrier (BBB) leads to severe alterations in brain physiology and is believed to trigger neurodegeneration. To investigate the molecular mechanisms driving the BBB dysfunction, very few human BBB cell culture models are available; of which, the human microvascular endothelial cell line (hCMEC/D3) is the most widely used. Thus far, array-based approaches or targeted seqeuncing based approaches have been employed to characterize the gene expression of the hCMEC/D3 model. However,The goal of this study is to perform deep transcriptomic sequencing of the BBB cell line and obtain features like gene expression, expressed single nucleotide variants, alternate splice forms, circular RNAs, long non-coding RNAs and micro RNAs. Overall design: We have developed blood brain barriers transcriptomics landscape using RNA sequencing and micro RNA seqeuncing data obtained from replicates of hCMEC/D3 BBB cell line.
BBBomics-Human Blood Brain Barrier Transcriptomics Hub.
No sample metadata fields
View SamplesIL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN) gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism.
Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway.
Treatment
View SamplesPurpose: Quiescence is a state of reversible cell cycle exit. Levels of polyadenylation factors decreases when proliferating cells become quiescent. The goals of this study are to determine the differential use of polyadenylation sites (changes in alternative polyadenylation) in quiescent vs. proliferating cells and also upon knockdown of polyadenylation factors. Methods: Two biological replicates of human dermal fibroblasts (12-1 and 12-3) were used for polyadeylation-site enriched RNA-seq on an Illumina HiSeq 2500 to compare quiescent vs. proliferating cells and polyadenylation factor knockdown vs. control cells. The reads were aligned to the human genome (hg19) uisng Tophat (2.0.14). The resulting bam files were used as an input to a python script provided by Gruber et al. (PMID: 27382025) to determine the counts for each polyadenylation site. Results: We observed a shift toward greater use of distal polyadenylation sites when the fibroblasts entered quiescence. We observed significant overlap between the genes that shift to greater distal site use with quiescence and CstF-64 or CPSF73 knockdown. Conclusions: The shift to greater distal site use with quiescence may reflect in part the reduced levels of cleavage and polyadenylation factors. Overall design: Perform polyadenylation site-enriched RNA-Seq on: (1) two biological replicates of proliferating and quiescent (contact-inhibited) cells, and (2) two biological replicates of control and polyadenylation factor (CstF64, CPSF73 or CFIm25) knockdown cells.
Alternative polyadenylation factors link cell cycle to migration.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment, Subject
View SamplesIn this study, we hypothesized that IL-27 could induce the expression of novel miRNAs in macrophages which may have functional relevance in terms of anti-viral activity. In this study, primary monocytes were differentiated into macrophages using M-CSF (M-Mac) or with a combination of M-CSF and IL-27 (I-Mac) for seven days. Following this, total RNA was extracted from these cells and deep sequencing was performed, in parallel with gene expression microarrays. Using the novel miRNA discovery software, miRDeep, seven novel miRNAs were discovered in the macrophages, four of which were expressed higher in I-Mac (miRNAs 2.1, 8.1, 9.1 and 14.2) whilst three were detected in both M-Mac and I-Mac (miRNAs 9.3, 13.6 and 15.8). The expression of six of the seven novel miRNAs was highly correlated with qRT-PCR using specific primer/probes designed for the novel miRNAs. Gene expression microarray further demonstrated that a number of genes were potentially targeted by these differentially expressed novel miRNAs.
Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties.
Specimen part, Treatment
View Samples