Seedlings of 35 different Arabidopsis thaliana ecotypes were compared. Triplicates were performed of 10 ecotpyes, single arrays of 25 ecotypes.
Diversity of flowering responses in wild Arabidopsis thaliana strains.
Specimen part
View SamplesThe Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.
Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.
Sex, Specimen part
View SamplesWhole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for cardiovascular disease. However, the utility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome microarray and targeted cytokine expression profiling on blood samples from normal cardiac function controls and first-time AMI patients within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways in AMI patients. To determine molecular signatures at the time of AMI that could prognosticate long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially expressed genes. Bioinformatic analysis of this differential gene set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of the developmental epithelial-to-mesenchymal transition, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. In conclusion, differentially regulated genes and modulated pathways were identified that predicted recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI warrants a larger study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. A validated transcriptome assay could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients.
Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.
Specimen part, Disease
View SamplesThe PI3K/Akt signaling pathway impacts various aspects of CD8 T cell homeostasis, such as effect versus memory cell differentiation, during viral infection. We used microarrays to determine which downstream molecules were affected and what other signaling pathways were interconnected with the Akt pathway by constitutive activation of Akt in LCMV-infected CD8 T cells.
Signal integration by Akt regulates CD8 T cell effector and memory differentiation.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesDespite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesDespite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.
Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.
Specimen part, Treatment
View SamplesMacrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and alterations in mRNA levels were analyzed. We identified three transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands, in the presence of three different “reprogramming” signals; high density immune complexes (IC), prostaglandin E2 (PGE2), or adenosine (Ado). All three of these cell populations produced higher levels of transcripts for IL-10, and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1Beta, IL-6, and IL-12. All three macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore we consider each to have immunoregulatory activity. This immunoregulatory activity occurred equally well in macrophages from stat6-deficient mice. The lack of STAT6 did not affect macrophages’ ability to reciprocally change cytokine production or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These immunoregulatory macrophages are transcriptionally and functionally related, and quite distinct from macrophages treated with IL-4.
The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.
No sample metadata fields
View SamplesDuring animal development, signals determine and organize a vast number of complex tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a -catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that we used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find a specific set of genes downstream of both -catenin and TCF with an additional group of genes regulated by Wnt. The non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.
An embryonic system to assess direct and indirect Wnt transcriptional targets.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells.
Specimen part, Cell line
View Samples