C33-A is a Homo sapiens cervix carcinoma cell line. In this experiment we determine the level of gene expression under exponentially growing conditions.
The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes.
Cell line
View SamplesCHD8 is an ATPase of the SNF2 family involved in ATP-dependent nucleosome remodeling. Our data indicate that in the presence of progestin (R5020), a progesterone receptor (PR) agonist, CHD8 is recruited to a number of PR enhancers. To correlate CHD8 binding sites with CHD8-regulated gene expression we performed a transcriptomic analysis of T47D-MTVL cells transfected with a control siRNA or a siRNA specifically targeting CHD8 and stimulated during 6h with progestin or vehicle. CHD8-dependent genes presented lower induction of up-regulated genes and lower repression of down-regulated genes, indicating that CHD8 is required for progesterone-dependent regulation of a subset of genes.
The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers.
No sample metadata fields
View SamplesA series of transfections was performed in Drosophila S2 cells to explore: 1) the types of target sites that Drosophila microRNAs recognize, 2) the relative functional efficacy of these sites in mediating repression, and 3) the determinants that allow some sites to have greater potency than others. 3p-seq was also performed to help reannotate and quantify the landscape of 3'' UTRs in Drosophila S2 cells. Overall design: Nine mRNA profiles were generated, with Drosophila S2 cells transfected with one of 6 microRNAs (miR-1, miR-4, miR-92a, miR-124, miR-263a, and miR-997). These samples were compared to 3 biological replicates of a mock transfection condition. 3p-seq data for S2 cells was also generated to help reannotate and quantify 3'' UTR isoforms.
Predicting microRNA targeting efficacy in Drosophila.
Specimen part, Subject
View SamplesHere, we use ribosome-footprint profiing and mRNA-seq to determine the average ribosome density on each gene in S. cerevisiae. We then perform quantitative modeling to identify the molecular determinants of ribosome density. Overall design: Analysis of S. cerevisiae
Poly(A)-tail profiling reveals an embryonic switch in translational control.
Cell line, Subject
View SamplesPolyA Position Profiling (3P-seq) for S. cerevisiae Overall design: Analysis of S. cerevisiae
Poly(A)-tail profiling reveals an embryonic switch in translational control.
Cell line, Subject
View SamplesThe post-transcriptional fate of messenger RNAs (mRNAs) is largely dictated by their 3'' untranslated regions (3''UTRs), which are defined by cleavage and polyadenylation (CPA) of pre-mRNAs. We used poly(A)-position profiling by sequencing (3P-Seq) to map poly(A) sites at eight developmental stages and tissues in the zebrafish. Analysis of over 60 million 3P-Seq reads substantially increased and improved existing 3''UTR annotations, resulting in confidently identified 3''UTRs for more than 78.79% of the annotated protein-coding genes in zebrafish. Most zebrafish genes undergo alternative CPA with more than a thousand genes using different dominant 3''UTRs at different stages. 3''UTRs tend to be shortest in the ovaries and longest in the brain. Isoforms with some of the shortest 3''UTRs are highly expressed in the ovary yet absent in the maternally contributed RNAs of the embryo, perhaps because their 3''UTRs are too short to accommodate a uridine-rich motif required for stability of the maternal mRNA. At two hours post-fertilization, thousands of unique poly(A) sites appear at locations lacking a typical polyadenylation signal, which suggests a wave of widespread cytoplasmic polyadenylation of mRNA degradation intermediates. Our insights into the identities, formation, and evolution of zebrafish 3''UTRs provide a resource for studying gene regulation during vertebrate development. Overall design: 3P-Seq was used to map the 3'' ends of protein-coding genes in the zebrafish genome
Extensive alternative polyadenylation during zebrafish development.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Childhood tolerance of severe influenza: a mortality analysis in mice.
Sex, Specimen part
View SamplesLimitation for amino acids is thought to regulate translation in mammalian cells primarily by signaling through the kinases mTORC1 and GCN2. We find that limitation for the amino acid arginine causes a selective loss of tRNA charging, which regulates translation through ribosome pausing at two of six arginine codons. Interestingly, limitation for leucine, an essential and abundant amino acid in protein, results in little or no ribosome pausing. Chemical and genetic perturbation of mTORC1 and GCN2 signaling revealed that their robust response to leucine limitation prevents ribosome pausing, while an insufficient response to arginine limitation led to loss of arginine tRNA charging and ribosome pausing. Codon-specific ribosome pausing decreased protein production and triggered premature ribosome termination without significantly reducing mRNA levels. Together, our results suggest that amino acids which are not optimally sensed by the mTORC1 and GCN2 pathways still regulate translation through an evolutionarily conserved mechanism based on synonymous codon usage. Overall design: Ribosome profiling was performed in HEK293T, HCT116, or HeLa cells during limitation for leucine or arginine for 3 or 6 hours to determine the effect of limiting single amino acid levels of ribosome elongation kinetics at the cognate codons. The same cell lines grown in nutrient-rich conditions were used as a control. These experiments were repeated in HEK293T cells with 250 nM Torin1, in cells stably expressing a flag-tagged wild-type or Q99L mutant RagB-GTPase or hrGFP, and in a GCN2 knockout cell line to determine the role of the mTORC1 and GCN2 pathways.
Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.
Cell line, Subject
View SamplesThe v-erbA oncogene belongs to a superfamily of transcription factors called nuclear receptors, which includes the retinoic acid receptors (RARs) responsible for mediating the effects of retinoic acid (RA). Nuclear receptors bind to specific DNA sequences in the promoter region of target genes and v-erbA is known to exert a dominant negative effect on the activity of the RARs. The repressor activity of v-erbA has been linked to the development of hepatocellular carcinoma (HCC) in a mouse model. We have used microarray analysis to identify genes differentially expressed in hepatocytes in culture (AML12 cells) stably transfected with v-erbA and exposed to RA. We have found that v-erbA can affect expression of RA-responsive genes. We have also identified a number of v-erbA-responsive genes that are known to be involved in carcinogenesis and which may play a role in the development of HCC.
Modulation of expression of RA-regulated genes by the oncoprotein v-erbA.
Specimen part, Cell line
View SamplesCerebral palsy is primarily an upper motor neuron disease that results in a spectrum of progressive movement disorders. Secondary to the neurological lesion, muscles from patients with cerebral palsy are often spastic and form debilitating contractures that limit range of motion and joint function. With no genetic component, the pathology of skeletal muscle in cerebral palsy is a response to aberrant neurological input in ways that are not fully understood. This study was designed to gain further understanding of the skeletal muscle response to cerebral palsy using microarrays and correlating the transcriptional data with functional measures. Hamstring biopsies from gracilis and semitendinosus muscles were obtained from a cohort of patients with cerebral palsy (n=10) and typically developing patients (n=10) undergoing surgery. Affymetrix HG-U133A 2.0 chips (n=40) were used and expression data was verified for 6 transcripts using quantitative real-time PCR, as well as for two genes not on the microarray. Chips were clustered based on their expression and those from patients with cerebral palsy clustered separately. Significant genes were determined conservatively based on the overlap of three summarization algorithms (n=1,398). Significantly altered genes were analyzed for over-representation among gene ontologies, transcription factors, pathways, microRNA and muscle specific networks. These results centered on an increase in extracellular matrix expression in cerebral palsy as well as a decrease in metabolism and ubiquitin ligase activity. The increase in extracellular matrix products was correlated with mechanical measures demonstrating the importance in disability. These data lay a framework for further studies and novel therapies.
Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy.
Sex, Age, Disease, Subject
View Samples