RNA from circulating blood reticulocytes was utilized to provide a robust description of genes transcribed at the final stages of erythroblast maturation. After depletion of leukocytes and platelets, Affymetrix HG-U133Plus 2.0 arrays were hybridized with probe from total RNA isolated from blood sampled from 6 umbilical cords and 6 healthy adult humans.
Let-7 microRNAs are developmentally regulated in circulating human erythroid cells.
Specimen part
View SamplesBackground Bone marrow stromal cells (BMSCs) are a heterogeneous population that participates in wound healing, immune modulation and tissue regeneration. Next generation sequencing was used to analyze transcripts from single BMSCs in order to better characterize BMSC subpopulations. Methods Cryopreserved passage 2 BMSCs from one healthy subject were cultured through passage 10. The transcriptomes of bulk BMSCs from designated passages were analyzed with microarrays and RNA sequencing (RNA-Seq). For some passages, single BMSCs were separated using microfluidics and their transcriptomes were analyzed by RNA-Seq. Results Transcriptome analysis microarray and RNA-Seq of unseparated BMSCs from passages 2, 4, 6, 8, 9 and 10 yielded similar results; both data sets grouped passages 4 and 6 and passages 9 and 10 together and genes differentially expressed among these early and late passage BMSCs were similar. 3D Diffusion map visualization of single BMSCs from passages 3, 4, 6, 8 and 9 clustered passage 3 and 9 into two distinct groups, but there was considerable overlap for passage 4, 6 and 8 cells. Markers for early passage, FGFR2, and late passage BMSCs, PLAT, were able to identify three subpopulations within passage 3 BMSCs; one that expressed high levels of FGFR2 and low levels of PLAT; one that expressed low levels of FGFR2 and high levels of PLAT and one that expressed intermediate levels of FGFR2 and low levels of PLAT. Conclusions Single BMSCs can be separated by microfluidics and their transcriptome analyzed by next generation sequencing. Single cell analysis of early passage BMSCs identified a subpopulation of cells expressing high levels of FGFR2 that might include skeletal stem cells. Overall design: Cryopreserved passage 2 BMSCs from one healthy subject were cultured through passage 10. The transcriptomes of bulk BMSCs from designated passages were analyzed with microarrays and RNA sequencing (RNA-Seq). For some passages, single BMSCs were separated using microfluidics and their transcriptomes were analyzed by RNA-Seq.
Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture.
Specimen part, Disease stage, Subject
View SamplesLong-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical grade tumor-redirected TSCM cells starting from nave precursors. CD8+CD62L+CD45RA+ nave T cells enriched by streptamer-based serial positive selection were activated by CD3/CD28 engagement in the presence of IL-7, IL-21 and the glycogen synthase-3 inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions allowed for the generation of CD19-CAR modified TSCM cells that were phenotypically, functionally and transcriptomically equivalent to their naturally occurring counterpart. Compared with T cell products currently under clinical investigation, CD19-CAR modified TSCM cells exhibit enhanced metabolic fitness, persistence and anti-tumor activity against systemic acute lymphoblastic leukemia xenografts. Based on these findings, we have initiated a phase 1 clinical study to evaluate the activity of CD19-CAR modified TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.
Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Longitudinal study of recurrent metastatic melanoma cell lines underscores the individuality of cancer biology.
Specimen part, Disease, Subject
View SamplesAdoptive immunotherapies using genetically-redirected T cells expressing a chimeric antigen receptor (CAR) or T cell receptor (TCR) are poised to enter mainstream clinical practice. Despite encouraging results, some patients fail to respond to current therapies. In part, this phenomenon has been associated with infusion of a reduced number of early memory T cells. Herein, we report that pharmacologic disruption of AKT-signaling (AKTi) is compatible with the transduction of both CARs and TCRs into human T cells and promotes a minimally differentiated CD62L-expressing phenotype. Critically, this intervention did not compromise cell yield. Mechanistically, disruption of AKT-signaling preserved MAPK activation and promoted the intra-nuclear accumulation of FOXO1, a key transcriptional regulator of T-cell memory. Consequently, AKTi synchronized the T-cell transcriptional profile for FOXO1-dependent target genes across multiple donors. Expression of an AKT-resistant FOXO1 mutant phenocopied the influence of AKTi while addition of AKTi to T cells expressing mutant FOXO1 failed to further augment the frequency of CD62L-expressing cells. Finally, CD19 CAR-modified T cells transduced and expanded in AKTi treated established B-cell acute lymphoblastic leukemia superiorly to conventionally grown T cells in a murine xenograft model. Thus, inhibition of AKT-signaling represents a generalizable strategy to generate large numbers of receptor-modified T cells with an early memory phenotype.
Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy.
Treatment, Subject, Time
View SamplesHepatocellular carcinoma (HCC) is the second most common cause of cancer related death. NAFLD affects a large proportion of the US population. Its incidence and prevalence are increasing to epidemic proportions around the world and is known to increase the risk of HCC. We studied how intrahepatic lipids affect adaptive immunity and HCC development in different murine models of NASH and HCC. Linoleic acid, a fatty acid found in NAFLD caused a selective loss of hepatic CD4+ but not CD8+ T cells leading to accelerated hepatocarcinogenesis. CD4+ T cells were more dependent on oxidative phosphorylation for energy source than CD8+ T cells, and disruption of oxidative phosphorylation by linoleic acid caused more severe damage in CD4+ T cells leading to selective loss of these cells. In vivo blockade of ROS using n-acetylcysteine reversed the NASH-induced hepatic CD4+ T cell decrease and delayed NASH-promoted HCC. Our results provide a new link between lipid metabolism and impaired anti-tumor surveillance.
NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis.
No sample metadata fields
View SamplesThrough a diversity of functional lineages, cells of the innate and adaptive immune system either drive or constrain immune reactions within tumors. Thus, while the immune system has a powerful ability to recognize and kill cancer cells, this function is often suppressed preventing clearance of disease. The transcription factor (TF) BACH2 controls the differentiation and function of multiple innate and adaptive immune lineages, but its role in regulating tumor immunity is not known. Here, we demonstrate that BACH2 is required to establish immunosuppression within tumors. We found that growth of subcutaneously implanted tumors was markedly impaired in Bach2-deficient mice and coincided with intratumoral activation of both innate and adaptive immunity but was dependent upon adaptive immunity. Analysis of tumor-infiltrating lymphocytes in Bach2-deficient mice revealed high frequencies of CD4+ and CD8+ effector cells expressing the inflammatory cytokine IFN-. Lymphocyte activation coincided with reduction in the frequency of intratumoral CD4+ Foxp3+ regulatory T (Treg) cells. Mechanistically, Treg-dependent inhibition of CD8+ T cells was required for BACH2-mediated tumor immunosuppression. These findings demonstrate that BACH2 is a key component of the molecular programme of tumor immunosuppression and identify a new target for development of therapies aimed at reversing immunosuppression in cancer.
The transcription factor BACH2 promotes tumor immunosuppression.
Specimen part
View SamplesTo identify systemic cytokine patterns in Chronic Graft-versus-Host-Disease (CGVHD), we profiled the gene expression of circulating monocytes. Pathway analysis identified two gene sets that were significantly upregulated across a broad range of patients with inflammatory and sclerotic presentations: (1) genes induced by Type I and Type II IFN, and (2) receptor genes for innate immune responses to cellular damage. Multiple IFN-inducible genes involved in signal transduction, anti-viral function, lymphocyte homeostasis, trafficking, and antigen presentation were increased. Furthermore, upregulation of TLR/NLR/CLR receptor genes for nucleic acids, ribonucleoproteins and annexin implicated response to damaged cells as a source of activation of inflammasomes and induction of Type I IFN.
Upregulation of IFN-Inducible and Damage-Response Pathways in Chronic Graft-versus-Host Disease.
Specimen part, Disease
View SamplesBoth targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses are either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression but surprisingly did not enhance tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T cell cytokines IFN-gamma and TNF-alpha synergized with vemurafenib to induce cell cycle arrest of tumor cells in vitro. This was recapitulated in vivo as continuous vemurafenib administration was required to delay melanoma progression following ACT. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer.
Type I cytokines synergize with oncogene inhibition to induce tumor growth arrest.
Sex, Disease, Disease stage, Cell line
View SamplesExpression of the MT1-MMP gene induces a significant upregulation of of oncogenes and tumorignenic genes in 184B5-MT1 cells.
Membrane type-1 matrix metalloproteinase confers aneuploidy and tumorigenicity on mammary epithelial cells.
Cell line
View Samples