Worms that inherited the sperm genome lacking the repressive mark H3K27me3 (K27me3 M+P-) misexpress genes in their germlines when compared to genetically identitical worms that inherited the sperm genome with H3K27me3 (K27me3 M+P+). Overall design: Transcriptome profiles of hermaphrodite germlines from hybrid worms that inherited the sperm genome with H3K27me3 (4 replicates of K27me3 M+P+) vs without H3K27me3 (4 replicates K27me3 M+P-) to compare to 4 replicates of 'wildtype'.
Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans.
Specimen part, Cell line, Subject
View SamplesThe germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germline traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in C. elegans suggested that expression of germline genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s longevity. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knock-down of individual P-granule and other germline genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germline program to daf-2’s long lifespan, and also tested if other mutants known to express germline genes in their somatic cells are long-lived. Our key findings are: 1) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. 2) Whole-genome transcript profiling of animals lacking a germline revealed that germline transcripts are not up-regulated in the soma of daf-2 worms compared to the soma of control worms. 3) Simultaneous removal of multiple P-granule proteins or the entire germline program from daf-2 worms did not reduce their lifespan. 4) Several mutants that robustly express a broad spectrum of germline genes in their somatic cells are not long-lived. Taken together, our findings argue against the hypothesis that acquisition of a germ cell program in somatic cells increases lifespan and contributes to daf-2’s longevity. Overall design: Transcriptome profiles of 3 replicates of sterile daf-2; mes-1 double mutants (experimental) and 3 replicates of sterile mes-1 single mutants (control) grown at 24°C
Reevaluation of whether a soma-to-germ-line transformation extends lifespan in Caenorhabditis elegans.
Cell line, Subject
View SamplesHere we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated Lys36 on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosomes. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 or the DRM subunit lin-54 oppositely skew target transcript levels and cause sterility; a double mutant restores near wild-type transcript levels and germ cell development. Together, yin-yang regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells.
Sex
View SamplesDecidual macrophage populations, CD11cHI and CD11cLO cells were analyzed for expression profiles and unique characteristics.
Two unique human decidual macrophage populations.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human decidual NK cells from gravid uteri and NK cells from cycling endometrium are distinct NK cell subsets.
Specimen part
View SamplesFragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133A arrays.
Human decidual NK cells from gravid uteri and NK cells from cycling endometrium are distinct NK cell subsets.
Specimen part
View SamplesFragmented RNA cocktails from FACS sorted Human decidual NK cell, and peripheral blood CD56Bright and CD56Dim NK cells, previously hybridization to HGU95AV2 chips (Koopman et al J Exp Med. 2003 Oct 20;198(8):1201-1), were stored long term at -80C, thawed and hybridized to HG-U133B arrays.
Human decidual NK cells from gravid uteri and NK cells from cycling endometrium are distinct NK cell subsets.
Specimen part
View SamplesHuman NK cells from the decidua basalis of gravid uteri (dNK) and from cycling endometrium (eNK) of women undergoing hysterectomy were isolated and compared by gene expression profiling using Affymetrix microarrays with probes representing ~47,400 transcripts. Substantial differences indicate that these two types of NK cells represent distinct subsets.
Human decidual NK cells from gravid uteri and NK cells from cycling endometrium are distinct NK cell subsets.
Specimen part
View SamplesPurpose: Determine if gene expression profiles in urine sediment could provide non-invasive candidate markers for painful bladder syndrome (PBS) with and/or without Hunner lesions. Materials and Methods: Fresh catheterized urine was collected and centrifuged from control (n = 5), lesion-free (n = 5), and Hunner lesion bearing (n = 3) patients. RNA was extracted from the pelleted material and quantified by gene expression microarray (Affymetrix Human Gene ST Array). Results: Three biologically likely hypotheses were tested: A) all three groups are distinct from one another; B) controls are distinct from both types of PBS patients combined, and C) Hunner lesion PBS patients are distinct from controls and non-Hunner-lesion PBS combined. For statistical parity an unlikely fourth hypothesis was included: non-Hunner-lesion PBS patients are distinct from controls and Hunner lesion PBS combined. Analyses supported selective upregulation of genes in the Hunner lesion PBS group (hypothesis C), and these were primarily associated with inflammatory function. This profile is similar to that reported in a prior microarray study of bladder biopsies in Hunner lesion PBS. Conclusions: Urine sediment gene expression from non-Hunner-lesion PBS patients lacked a clear difference from that of control subjects, while the array signatures from PBS patients with Hunner lesions showed a clear, primarily inflammatory, signature. This signature was highly similar to that seen in a prior microarray study of bladder biopsies. Thus, although sample sizes were small, this work suggests that gene expression in urine sediment may provide a non-invasive biomarker for Hunner lesion, but not non-Hunner lesion, PBS.
Gene expression analysis of urine sediment: evaluation for potential noninvasive markers of interstitial cystitis/bladder pain syndrome.
Sex, Age, Disease, Disease stage
View SamplesIdentification of all genes expressed by mouse olfactory sensory neurons; genes expressed in mature neurons, immature neurons, or both were distinguished. Independent validation of enrichment ratio values supported by statistical assessment of error rates was used to build a database of statistical probabilities of the expression of all mRNAs detected in mature neurons, immature neurons, both types of neurons (shared), and the residual population of all other cell types.
Genomics of mature and immature olfactory sensory neurons.
Sex, Specimen part
View Samples