Functional deficits persist after spinal cord injury (SCI) because axons in the adult mammalian central nervous system (CNS) fail to regenerate. However, modest levels of spontaneous functional recovery are typically observed after trauma, and are thought to be mediated by the plasticity of intact circuits. The mechanisms underlying intact circuit plasticity are not delineated. Here, we characterize the in vivo transcriptome of sprouting intact neurons from ngr1 null mice after partial SCI. We identify the lysophosphatidic acid signaling modulators Lppr1 and Lpar1 as intrinsic axon growth modulators for intact corticospinal motor neurons after adjacent injury. Furthermore, in vivo Lpar1 inhibition or Lppr1 overexpression enhances sprouting of intact corticospinal tract axons and yields greater functional recovery after unilateral brainstem lesion in wild type mice. Thus, the transcriptional profile of injury-induced sprouting of intact neurons reveals targets for therapeutic enhancement of axon growth initiation and new synapse formation. Overall design: GFP labeled Corticospinal motor neurons (CSMNs) were harvetsed via laser capture microdissection to assess gene expression between populations that were quiescent and those that initated a functional axon growth response.
Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury.
Specimen part, Cell line, Subject
View SamplesRNA-seq data of crwn1, crwn2, crwn4, crwn1 crwn2 and crwn1 crwn4
Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction.
Sex, Specimen part
View SamplesBackground: Extinction-based exposure therapy is used in treating anxiety- and trauma-related disorders, however there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to facilitate the inadequate protection against return-of-fear phenomena.
Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction.
Sex, Specimen part
View SamplesBackground: Extinction-based exposure therapy is used in treating anxiety- and trauma-related disorders, however there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to facilitate the inadequate protection against return-of-fear phenomena.
Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction.
Sex, Specimen part
View SamplesArgonaute (Ago) proteins associate with microRNAs (miRNAs), which guide them to complementary target mRNAs resulting in gene silencing.
Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing <i>in vivo</i>.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Specimen part, Cell line
View SamplesPhf5a regulates transcription elongation in mouse embryonic stem cells (ESCs), through regulation of the Paf1 complex.
Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.
Specimen part
View SamplesPrimary human bronchial epithelial cells were transduced with control or hYAP(S127A) lentivirus in sphere forming conditions. Bronchospheres were harvested on day 18-20 for RNAseq analysis Overall design: Passage 1 Primary HBECs from 2 independent donors were transduced with control or hYAP lentivirus. 48 hours post infection, cells were plated on transwell inserts in a 50-50 mixture of ALI medium-Cultrex BME reduced growth factor (RGF) to form spheres. Well differentiated bronchospheres were harvested for RNA-seq analysis on day 18-20 by combining 3 wells of each group for each donor.
Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.
No sample metadata fields
View Samples