M21 or M21L cells were grown either in a 2-dimensional culture (on plastic) or in a 3-dimensional-collagen model.
Protein kinase Cα (PKCα) regulates p53 localization and melanoma cell survival downstream of integrin αv in three-dimensional collagen and in vivo.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View SamplesTo investgate the role of EBF1 in human adipocyte, we performed global expression profiling in human adipocytes transfected with siRNA targeting EBF1.
Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.
Specimen part
View SamplesOvercoming cellular growth restriction, including the evasion of cellular senescence, is a hallmark of cancer. We report that PAK4 is overexpressed in all human breast cancer subtypes and associated with poor patient outcome. In mice, MMTV-PAK4 overexpression promotes spontaneous mammary cancer, while PAK4 gene depletion delays MMTV-PyMT driven tumors. Importantly, PAK4 prevents senescence-like growth arrest in breast cancer cells in vitro, in vivo and ex vivo, but is not needed in non-immortalized cells, while PAK4 overexpression in untransformed human mammary epithelial cells abrogates H-Ras-V12-induced senescence. Mechanistically, a PAK4 – RELB - C/EBPa axis controls the senescence-like growth arrest and a PAK4 phosphorylation residue (RELB-Se151) is critical for RELB-DNA interaction, transcriptional activity and expression of the senescence regulator C/EBPa. These findings establish PAK4 as a promoter of breast cancer that can overcome oncogene-induced senescence and reveal a selective vulnerability of cancer to PAK4 inhibition. Overall design: We quantify transcription via high-throughput RNA sequencing in two human breast cancer cell lines (BT-549 and Hs578T) 72hrs after transient transfection with control (siControl) or PAK4-targetting siRNA.
PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer.
Specimen part, Cell line, Subject
View SamplesExpression profiling of proliferating primary myoblasts obtained from vastus lateralis muscle biopsises from healthy individuals and stimulated with Vitamin D (100 nM 1,25(OH)2D3) or vehicle for 24h.
Evidence for Vitamin D Receptor Expression and Direct Effects of 1α,25(OH)2D3 in Human Skeletal Muscle Precursor Cells.
Specimen part, Treatment, Subject
View SamplesChildren with newly diagnosed ITP that after 12 month enter remission, shows molecular separate entities. The molecular basis for remission and tolerance induction is characterized by gene transcriptional profiling
Normalised immune expression in remission of paediatric ITP.
No sample metadata fields
View SamplesImmune thrombocytopenia (ITP) is an autoimmune disease where platelets are destroyed prematurely. In the majority of children the disease resolves but in some it becomes chronic. To investigate whether the two forms of the disease are similar or separate entities we performed DNA microarray analysis of T-cells from newly diagnosed children and children with chronic ITP. We found complete separation of the expression files between the two forms of the disease. Furthermore, the gene expression of several cytokines differed between the two forms of the disease. This was also reflected in plasma with increased levels of IL-16 and TWEAK and lower levels of IL-4 in newly diagnosed compared with chronic ITP. Thus, our data indicate that the two forms of the disease may be separate entities.
Differences in gene expression and cytokine levels between newly diagnosed and chronic pediatric ITP.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break.
No sample metadata fields
View SamplesGenome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription based on its role as insulator. More recently, data are emerging indicating direct roles for gene regulation also in yeast. Here we extend these studies by investigating whether the cohesin loader Scc2 is involved in regulation of gene expression. We performed global gene expression profiling in the absence and presence of DNA damage, in wild type and Scc2 deficient G2/M arrested cells, when it is known that Scc2 is important for DNA double strand break repair and formation of damage induced cohesion. We found that not only the DNA damage specific transcriptional response is distorted after inactivation of Scc2, but also the overall transcription profile. Interestingly, these alterations did not correlate with changes in cohesin binding.
Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break.
No sample metadata fields
View SamplesAccording to the Canadian Food Inspection Agency and Health Canada, genetically modified crops are considered safe if they are substantially equivalent to a conventional crop in regards to agronomic, physiological and compositional characteristics. A recurring issue in safety assessment of genetically modified crops is the paucity of analytical methods to detect unintended or unexpected outcomes of genetic modification. Traditional targeted compound comparative analyses are limited in scope and capacity to detect unintended changes in chemical composition. This study explored the potential of using microarray technology to assess the substantial equivalence of gene expression profiles between genetically modified and conventional soybean cultivars. Different pre processing methods were applied to the raw expression data from the arrays, and clustering methods were used to try and differentiate the genetically modified cultivars from the conventional cultivars. Results showed that more variation existed between different strains of conventional cultivars than between conventional and genetically modified cultivars.
Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars.
No sample metadata fields
View Samples