ARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesGlomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte cytoskeleton. To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involving cytoskeletal-associated pathways, adhesion, migration and extracellular matrix composition to be affected. Everolimus is capable of protecting podocytes from injury, both on the transcriptome and protein level. Rescued genes included TUBB2B and DCDC2, both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Confirming gene expression data, Western-blot analysis in cultured podocytes showed an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Microtubule-inhibitor experiments led to a maldistribution of TUBB2B and DCDC2 as well as an aberrant reorganization of the actin cytoskeleton. Tubb2bbrdp/brdp mice showed a delay in glomerular podocyte and capillary development. Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development
Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression.
Specimen part, Treatment
View SamplesNeuronal activity causes the rapid expression of immediate early genes that are crucial for experience driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIb (Topo IIb), and knockdown of Topo IIb attenuates both DSB formation and early response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons. Overall design: Generation of sequencing data from ChIP-seq with antibodies against ?H2AX and Topo IIß after neuronal activity stimulation, and RNA-seq after etoposide treatment
Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes.
No sample metadata fields
View SamplesXenograft models remain a cornerstone technology in the development of anti-cancer agents. The ability of immunocompromised rodents to support the growth of human tumors provides an invaluable transition between in vitro testing and clinical trials. Therefore, approaches to improve model selection are required. In this study, cDNA microarray data was generated for a collection of xenograft models at in vivo passages 1, 4 and 10 (P1, P4 and P10) along with originating cell lines (P0). These data can be mined to determine transcript expression 1) relative to other models 2) with successive in vivo passage and 3) during the in vitro (P0) to in vivo (P1) transition.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
No sample metadata fields
View SamplesTranscriptomic studies of human tumor xenografts are complicated by the presence of murine cellular mRNA. As such, it is useful to know the extent to which mouse mRNA cross-hybridizes to any given array platform. In this study, murine cDNA samples from diverse sources were hybridized to Affymetrix Human Genome U133 Plus 2.0 Arrays. In this regard it is possible to identify specific probes that are potential targets of cross-species interference.
Gene expression profiling of 49 human tumor xenografts from in vitro culture through multiple in vivo passages--strategies for data mining in support of therapeutic studies.
Specimen part, Cell line
View SamplesChronic non-healing venous leg ulcers (VLUs) are a widespread debilitating disease with high morbidity and associated costs, as approximately $15 billion annually are spent on the care of VLUs. Despite their socioeconomic burden, there is a paucity of novel treatments targeted towards healing VLUs, which can be attributed to both lack of pathophysiologic insight into VLU development as well as lack of knowledge regarding biologic actions of VLU-targeted therapies. Currently, the bioengineered bilayered living cellular construct (BLCC) skin substitute is the only FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or with BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA and protein analyses. Ulcers treated with BLCC skin substitute displayed three distinct patterns suggesting the mechanisms by which BLCC shifted a non-healing into a healing tissue response: it modulated inflammatory and growth factor signaling; it activated keratinocytes; and it attenuated Wnt/-catenin signaling. In these ways, BLCC application orchestrated a shift of the chronic non-healing ulcer microenvironment into a distinctive healing milieu resembling that of an acute, healing wound. Our findings also provide first patient-derived in vivo evidence of specific biologic processes that can be targeted in the design of therapies to promote healing of chronic VLUs.
A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers.
Specimen part, Disease stage, Time
View SamplesPorcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of 3rd trimester pregnant pigs can result in transmission of the virus to the fetus and ultimately death in utero or postnatally. Little is known about the immune response to infection at the maternal-fetal interface and in the fetus itself, or the molecular events behind virus transmission and disease progression in the fetus. To investigate these processes, RNA-sequencing of two tissues, uterine endothelium adjacent to the umbilical attachment site and fetal thymus, was performed 21 days post challenge on four groups of fetuses selected from a large PRRSV challenge experiment of pregnant gilts. Overall design: RNA-seq experiment compared gene expression between four different groups of fetuses (n=12 per group): control (CON-uninfected fetuses from mock inoculated gilts), UNINF (uninfected fetuses from PRRSV-inoculated gilts), INF (infected fetuses from PRRSV-inoculated gilts), and meconium-stained fetuses (MEC-meconium-stained fetuses from PRRSV-inoculated gilts) and investigated two tissues: uterine endometrium (with adherent placental tissue) at the site of umbilical attachment and fetal thymus (96 samples in total). Three contrasts were performed for the differential expression (edgeR) and network (WGCNA) analyses: UNINF v CON, INF v UNINF, and MEC v INF.
Genome-wide analysis of the transcriptional response to porcine reproductive and respiratory syndrome virus infection at the maternal/fetal interface and in the fetus.
Specimen part, Subject
View SamplesBackground: MicroRNA-196b-5p (miR-196b-5p) has been previously involved in carcinogenesis, though its role in colorectal cancer (CRC) patients and biology remains controversially. In our current study, we systematically explored the clinical significance and biological relevance of miR-196b-5p, as well as the underlying molecular mechanisms regulated by miR-196b-5p in colorectal cancer.
miR-196b-5p Regulates Colorectal Cancer Cell Migration and Metastases through Interaction with HOXB7 and GALNT5.
Cell line
View SamplesDiabetic foot ulcers (DFUs) are the leading cause of lower leg amputations in diabetic population. To better understand molecular pathophysiology of DFUs we used patients specimens and genomic profiling. We identified 3900 genes specifically regulated in DFUs. Moreover, we compared DFU to human skin acute wound (AW) profiles and found DNA repair mechanisms and regulation of gene expression among the processes specifically suppressed in DFUs, whereas essential wound healing-related processes, inflammatory/immune response or cell migration, were not activated properly. To identify potential regulators of DFU-specific genes, we used upstream target analysis. We found miR-15/16 family enriched in DFUs, but not in AW, which was confirmed by qPCR. We found that infection with the most common DFU colonizer, Staphylococcus aureus, triggers induction of miR-15-5p, which in turn, targets multiple DFU-specific genes, including genes involved in DNA repair (WEE1, MSH2 and RAD50) and the regulator of inflammatory pathway, IKBKB. Induction of miR-15b-5p, either by miR-mimic transfection in vitro or by S. aureus infection of acute wounds ex vivo, suppressed both WEE1 and IKBKB. Consequently, we detected an increase in DNA double strand breaks in DFUs. In summary, our data indicate that S. aureus infection, via induction of miR-15b-5p, may lead to suppression of DNA repair mechanisms and a sub-optimal inflammatory response, contributing to pathophysiology of DFU patients
Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers.
Specimen part, Disease, Disease stage
View SamplesPrimary human hepatocytes (PHHs) are a liver-specific cell subtype, and we have shown that these cells respond in a unique manner to the introduction of hepatitis C viral RNA (HCV vRNA) derived from different genotypes of the virus.
Transmitted/founder hepatitis C viruses induce cell-type- and genotype-specific differences in innate signaling within the liver.
Specimen part
View Samples