refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 282 results
Sort by

Filters

Technology

Platform

accession-icon GSE19664
Expression difference between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The recruitment of mesenchymal stem cells in order to reconstruct damaged cartilage of osteoarthritis joints is a challenging tissue engineering task. Vision towards this goal is blurred by a lack of knowledge about the underlying differences between chondrocytes and MSC during the chondrogenic cultivation process. The aim of this study was to shed light on the differences between chondrocytes and MSC occurring during chondral differentiation through tissue engineering.

Publication Title

Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84096
Dynamic response of EGF stimulation in lung cancer cells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

TTCA: an R package for the identification of differentially expressed genes in time course microarray data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE84095
Dynamic response of EGF stimulation in lung cancer cells [EGF]
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for the detection of significant expression dynamics often fail when the expression dynamics show a large heterogeneity, and often cannot cope with irregular and sparse measurements.

Publication Title

TTCA: an R package for the identification of differentially expressed genes in time course microarray data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE84094
Dynamic response of EGF stimulation in lung cancer cells [controls]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for the detection of significant expression dynamics often fail when the expression dynamics show a large heterogeneity, and often cannot cope with irregular and sparse measurements.

Publication Title

TTCA: an R package for the identification of differentially expressed genes in time course microarray data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP168748
A coronin 1-dependent signaling axis in T cells essential for allograft rejection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of this analysis was to assess the similarity in transcriptomes between WT and Coro1-/- across regulatory and conventional T cells. Overall design: mRNA profiles of wild-type and Coronin1A knockout from murine regulatory (trg) and conventional (con) T cells were generated by deep sequencing, in triplicate, using Illumina TruSeq stranded mRNA sample kit.

Publication Title

Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE83136
Long recovery after heat shock
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Abiotic stress is a major factor for crop productivity, a problem likely to be exacerbated by climate change. Improving the tolerance to environmental stress is one of the most important goals of crop breeding programmes. While the early responses to abiotic stress in plants are well studied, plant adaptation to enduring or recurring stress conditions has received little attention. This project investigates the molecular mechanism of the maintenance of acquired thermotolerance as a model case of stress memory in Arabidopsis. Arabidopsis seedlings acquire thermotolerance through a heat treatment at sublethal temperatures. To investigate the underlying mechanisms, we are investigating changes in the transcriptome at two timepoints after a heat acclimation treatment using Arabidopsis thaliana seedlings.

Publication Title

Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE56646
MOF-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation [array]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cells (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL (Male-Specific Lethal) and NSL (Non-specific lethal). The individual contribution of MSL and NSL complexes to transcription regulation in mESCs is not well understood. Our genome-wide analysis of MSL and NSL localization show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds at promoters, iii) while MSL binds in gene bodies. Knockdown of Msl1 leads to a global loss of histone H4K16ac indicating that MSL is the main HAT acetylating H4K16 in mESCs. MSL was enriched at many mESC-specific genes, but also at bivalent domains. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs. Furthermore, MSL is essential for the regulation of key mESC-specific and bivalent developmental genes.

Publication Title

Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84000
Specific metabolic activation of adipose tissue macrophages during obesity promotes inflammatory responses
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1-/- mice was used to examine the role of hypoxia-inducible factor-1 (HIF-1) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity.

Publication Title

Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42715
Expression data from open bariatric surgery patients - various adipose samples
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Diabetes and obesity are widespread diseases with signifciant socioeconomic implications. We used three different types of human adipose tissue (epigastric, visceral, and subcutaneous) in order to determine differences in global gene expression between these adipose depots in severely obese patients.

Publication Title

Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon GSE7259
Pathway and single gene analysis of Caco-2 cell differentiation by ascorbate-stabilized quercetin
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The aim was to investigate mechanisms contributing to quercetins previously described effects on cell-proliferation and -differentiation, which contradicted its proposed anti-carcinogenic potency. In a 10-day experiment, 40 M quercetin stabilized by 1mM ascorbate reduced Caco-2 differentiation up to 50% (P<0.001). Caco-2 RNA from days 5 and 10, hybridized on HG-U133A2.0 Affymetrix GeneChips, showed 1,743 affected genes on both days (P<0.01). All 14 Caco-2 differentiation-associated genes showed decreased expression (P<0.01), including intestinal alkaline phosphatase that was confirmed technically (qRT-PCR) and functionally (enzyme-activity).

Publication Title

Pathway and single gene analyses of inhibited Caco-2 differentiation by ascorbate-stabilized quercetin suggest enhancement of cellular processes associated with development of colon cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact