Transgenic Arabidopsis plants with constitutively low inositol (1,4,5) triphosphate exhibit an increased tolerance to water stress by an ABA-independent pathway
Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling.
No sample metadata fields
View SamplesMyalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a syndrome of unknown etiology characterized by profound fatigue exacerbated by physical activity, also known as post-exertional malaise (PEM). Previously, we did not detect evidence of immune dysregulation or virus reactivation outside of PEM periods. Here we sought to determine whether cardiopulmonary exercise stress testing of ME/CFS patients could trigger such changes. ME/CFS patients (n=14) and matched sedentary controls (n=11) were subjected to cardiopulmonary exercise on 2 consecutive days and followed up to 7 days post-exercise, and longitudinal whole blood samples analyzed by RNA-seq. Although ME/CFS patients showed significant worsening of symptoms following exercise versus controls, with 8 of 14 ME/CFS patients showing oxygen consumption (V?O2) on day 2, transcriptome analysis yielded only 6 differentially expressed gene (DEG) candidates when comparing ME/CFS patients to controls across all time points. None of the DEGs were related to immune signaling, and no DEGs were found in ME/CFS patients before and after exercise. Virome composition (P=0.746 by chi-square test) and number of viral reads (P = 0.098 by paired t-test) were not significantly associated with PEM. These observations do not support transcriptionally-mediated immune cell dysregulation or viral reactivation in ME/CFS patients during symptomatic PEM episodes. Overall design: RNAseq of whole blood samples from ME/CFS patients and controls following exercise.
Whole blood human transcriptome and virome analysis of ME/CFS patients experiencing post-exertional malaise following cardiopulmonary exercise testing.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesThe transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the ß-blocker atenolol (ATE) and the ß-agonist isoproterenol (ISO). Differential expression analyses revealed a large set of genes responding to ISO (n=1770 at FDR=0.0001) and a comparatively small one responding to ATE (n=23 at FDR=0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r= -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibited coherent transcription profiles across some strains and/or treatments. Correlations between such modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. Our study provides new insights into the transcriptional response of the heart to perturbations of the ß-adrenergic system, implicating several new genes that had not been associated to this system previously. Overall design: Cardiac mRNA expression profiles of the various inbred mouse strains were examined either under baseline condition (control) or in response to chronic administration of isoproterenol or atenolol at 10 mg/kg per day for 2 weeks. Expression data were produced by RNA-sequencing, in triplicates, using the HiSeq 2000 Illumina platform. Only males, aged ten to twelve weeks on average, were included in the experimental protocol. Mouse ID numbers refer to those described in Berthonneche C. et al. PLoS One. 2009 Aug 12;4(8):e6610 (doi: 10.1371/journal.pone.0006610. PMID: 19672458). Corresponding individual phenotypic values, in particular heart rate, systolic blood pressure, electrocardiogaphic measurements and heart weight are available in dataset "maurer1" of the Mouse Phenome Database (http://phenome.jax.org/). Preparation of the sequencing libraries, RNA-sequencing and RNA expression quantitations were performed by the BGI.
RNAseq analysis of heart tissue from mice treated with atenolol and isoproterenol reveals a reciprocal transcriptional response.
Sex, Specimen part, Treatment, Subject
View SamplesGenome-wide gene expression in 33 fusion-positive and 25 fusion-negative rhabdomyosarcoma cases was studied using GeneChip Human Genome U133 Plus2 (Affymetrix)
Distinct methylation profiles characterize fusion-positive and fusion-negative rhabdomyosarcoma.
Specimen part
View SamplesThis series includes the global gene expression profile of the vastus lateralis muscle for 10 young (19-25 years old) and 12 older (70-80 years old) male subjects.
Identification of a molecular signature of sarcopenia.
No sample metadata fields
View SamplesA phylogenetic analysis of seven different species (human, mouse, rat, worm, fly, yeast, and plant) utilizing all (541) basic helix-loop-helix (bHLH) genes identified, including expressed sequence tags (EST), was performed. A super-tree involving six clades and a structural categorization involving the entire coding sequence was established. A nomenclature was developed based on clade distribution to discuss the functional and ancestral relationships of all the genes. The position/location of specific genes on the phylogenetic tree in relation to known bHLH factors allows for predictions of the potential functions of uncharacterized bHLH factors, including EST's. A genomic analysis using microarrays for four different mouse cell types (i.e. Sertoli, Schwann, thymic, and muscle) was performed and considered all known bHLH family members on the microarray for comparison. Cell-specific groups of bHLH genes helped clarify those bHLH genes potentially involved in cell specific differentiation. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique aspects of the evolution and functional relationships of the different genes in the bHLH gene family. PMID: 18557763
Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation.
Sex, Specimen part
View SamplesThe effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived with would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), primary human hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA on a quantitative metric when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal low concordance for all methods. We investigate differences in the baseline state of cultured cells in the context of drug-induced perturbations in rat liver and highlight the striking similarity between toxicant-exposed cells in vivo and untreated cells in vitro.
Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.
Sex, Specimen part
View SamplesIschemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.
Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.
Specimen part, Treatment
View SamplesThe signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. The purpose of this study was to identify eye-specific genes controlled by RA during photoreceptor differentiation in the zebrafish.
Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish.
Specimen part
View SamplesMutations of RUNX1 are detected in patients with myelodysplastic syndrome (MDS). In particular, C-terminal truncation mutations lack a transcription regulatory domain and have increased DNA binding through the runt homology domain (RHD). The expression of the RHD, RUNX1(41-214), in mouse hematopoietic cells induced progression to MDS and acute myeloid leukemia (AML). Analysis of pre-myelodysplastic animals revealed expansion of c-Kit+Sca-1+Lin- (KSL) cells and skewed differentiation to myeloid at the expense of the lymphoid lineage. These abnormalities correlate with the phenotype of Runx1-deficient animals, as expected given the reported dominant-negative role of C-terminal mutations over the full-length RUNX1. However, MDS is not observed in Runx1-deficient animals. Gene expression profiling revealed that RUNX1(41-214) KSLs have an overlapping yet distinct gene expression profile from Runx1-deficient animals. Moreover, an unexpected parallel was observed between the hematopoietic phenotype of RUNX1(41-214) and aged animals. Genes deregulated in RUNX1(41-214), but not in Runx1-deficient animals, were inversely correlated with the aging gene signature of hematopoietic stem cells (HSC), suggesting that disruption of the expression of genes related to normal aging by RUNX1 mutations contributes to development of MDS. The data presented here provide insights into the mechanisms of development of MDS in HSCs by C-terminal mutations of RUNX1.
Expression of the runt homology domain of RUNX1 disrupts homeostasis of hematopoietic stem cells and induces progression to myelodysplastic syndrome.
Specimen part
View Samples