Understanding how developmental and environmental signals are integrated to produce specific responses is one of the main challenges of modern biology. Hormones and, most importantly, interactions between different hormones serve as crucial regulators of plant growth and development, playing central roles in the coordination of internal developmental processes with the environment. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones, ethylene and auxin.
Multilevel interactions between ethylene and auxin in Arabidopsis roots.
No sample metadata fields
View SamplesRNAseq of ex vivo CD8 T cell lineages and in vitro differentiated CD8 T cells treated with nanocarriers encapsulating control or Foxo1-3A transcription factor mRNA Overall design: Gene expression in central memory CD8 and in vitro Foxo1-3A nanoparticle treated CD8 were compared to control cells cultured in vitro with eGFP mRNA encapsulating nanoparticles.
Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.
Cell line, Treatment, Time
View SamplesRosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for PPARg, the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We have now addressed this issue by studying the direct effects of rosiglitazone on gene transcription, using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 minutes and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (eRNAs). Upregulated eRNAs occurred almost exclusively at PPARg binding sites, to which rosi treatment recruited the coactivator MED1. By contrast, transcriptional repression by rosi involved a loss of MED1 from eRNA sites devoid of PPARg and enriched for other TFs including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of antidiabetic drugs.
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers.
Cell line, Treatment, Time
View SamplesWe measured transcriptional changes in an effort to understand mechanisms of action resulting from the introduction of global transcriptional machinery engineering in E. coli in the presence and absence of ethanol.
Global transcription machinery engineering: a new approach for improving cellular phenotype.
No sample metadata fields
View SamplesThe goal of the study is a high-throughput evaluation of the effect of TGFb treatment on gene expression.
Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.
Specimen part
View SamplesWe measured transcriptional changes in four strains P2, rpoD3, rpoA14, and rpoA27 - in an effort to understand mechanisms by which L-tyrosine production is positively influenced by the presence of mutant rpoA- and rpoD-encoded transcriptional components.
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.
No sample metadata fields
View SamplesTranscriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation. In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones. Although we find ~30% of the genome to be differentially expressed following a cold shock, only relatively few genes (n=26) are up- or down-regulated in a population-specific way. Intriguingly, 24 of these 26 genes show a greater degree of differential expression in the African population. Likewise, there is an excess of genes with particularly strong cold-induced changes in expression in Africa on a genome-wide scale. The analysis of the transcriptional cold shock response most prominently reveals an upregulation of components of a general stress response, which is conserved over many taxa and triggered by a plethora of stressors. Despite the overall response being fairly similar in both populations, there is a definite excess of genes with a strong cold-induced fold-change in Africa. This is consistent with a detrimental deregulation or an overshooting stress response. Thus, the canalization of European gene expression might be responsible for the increased cold tolerance of European flies. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from a Africa (4 lines) and Europe (4 lines) during a 7h cold shock experiment. Samples include room temperature controls, 3.5h into the cold shock, 15 minutes after recovery and 90 minutes after recovery. 2 biological replicates each.
Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster.
Sex, Subject
View SamplesThe ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from an African, American, Asian and European population after infection with Beauveria bassiana. Samples include uninfected controls, 8h after infection and 24h after infection. 3 biological replicates each (2 in the case of American controls).
Survival Rate and Transcriptional Response upon Infection with the Generalist Parasite Beauveria bassiana in a World-Wide Sample of Drosophila melanogaster.
Sex, Specimen part, Subject
View SamplesTo characterize genes, pathways, and transcriptional regulators enriched in the mouse cornea, we compared the expression profiles of whole mouse cornea, bladder, esophagus, lung, proximal small intestine, skin, stomach, and trachea.
The Ets transcription factor EHF as a regulator of cornea epithelial cell identity.
Specimen part
View Samples