Upon immunization with a T cell dependent antigen naive follicular B cells (Fo) are activated and a germinal center reaction is induced. Within the next 2 weeks large germinal centers develop where the process of affinity maturation takes place. To analyze the gene expression profile of resting and activated B cells, follicular B cells (Fo), B cells from early (GC1) and late germinal centers (GC2) were isolated and their gene expression profile compared.
In silico subtraction approach reveals a close lineage relationship between follicular dendritic cells and BP3(hi) stromal cells isolated from SCID mice.
Sex, Specimen part
View SamplesThe project aims to identify differentially expressed genes in adipose progenitors that were freshly isolated from wild-type or Nr4a1-/- mice. The AP preparation involved adipose tissue digestion, and negative selection of the stromal vascular fraction (depletion of CD31+ endothelial cells and Lineage positive cells. Overall design: 16 samples were anlyzed. 4 groups of adipose progenitors were isolated from subcutaneou(SAT) and visceral (VAT) adipose tissue from Nr4a1 wildtype(Nr4a1+/+) and knockout(Nr4a1-/-) mice. Each group has 4 biological replicates.
Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity.
Subject
View SamplesTo identify of candidate transcriptional regulators of AP function, microarray was utilized to analyze gene expression in freshly isolated AP from stromal-vascular fractions relative to whole adipose tissue (AT) from the same mouse.
Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity.
No sample metadata fields
View SamplesDifferentiation of human pluripotent stem cells toward definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA-sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. We further show that differentiation-arrested phenotype is inversely correlated with zinc concentration in the differentiation media. This study improves our understanding of in-vitro DE differentiation and provides actionable options to improve DE differentiation efficiency. Overall design: RNA-sequencing of 329 single cells collected at four time points during a 4-day DE differentiation to identify mechanisms leading to cellular heterogeneity during differentiation
Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm.
Specimen part, Subject, Time
View SamplesHigh-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to temperature and light
High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions.
Specimen part, Time
View SamplesPurpose: Long non-coding RNAs (lncRNAs) display development-specific gene expression patterns, yet we know little about their precise roles in lineage commitment. Here, we discover a novel mammalian heart-associated lncRNA, AK143260, necessary for cardiac lineage specification. Methods: Gene expression profiles of mouse ESCs and differentiated organs were analyzed for master regulators of lineage commitment. The AK143260 transcript was shown to be strongly expressed in mESCs and in cells undergoing cardiac differentiation. Its role in cardiac differentiation was examined using depletion and in vitro differentiation systems, with morphological and gene expression profiling at different time-points. Results: mESCs depleted of AK143260, named Braveheart, fail to differentiate into cardiomyocytes and to activate a core cardiac gene regulatory network including key transcription factors driving cardiogenesis. We show that Braveheart functions upstream of MesP1 (mesoderm posterior 1), a transcription factor critical for specification of the earliest known multi-potent cardiovascular progenitor and in promoting epithelial-mesenchymal transition (EMT). Consistent with this, Braveheart depletion leads to morphological defects and loss of cardiogenic potential in a defined in vitro cardiomyocyte differentiation system. Furthermore, Braveheart is necessary to maintain myocardial gene expression and myofibril organization in neonatal cardiomyocytes. Conclusions: These findings reveal that Braveheart is an important regulator of cardiac commitment and implicate lncRNAs as potential therapeutic targets for cardiac disease and regeneration. Overall design: Gene expression profiles from control and Bravheart-depleted mESCs were obtained by RNA-Seq on an Illumina HiSeq2000 instruments at Days 0,3,6 and 9. Gene expression profiles from mESCs, MEFs, partially reprogrammed MEFs and miPS cells were obtained by RNA-Seq on Illumina GAII/GAIIx instruments.
Braveheart, a long noncoding RNA required for cardiovascular lineage commitment.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesThis study was performed to identify gene expression differences in not otherwise specified soft tissue sarcomas (NOS, malignant fibrous histiocytomas) and correlate them to histological findings and the clinical course. RNA was isolated and differential gene expression was analysed by the microarray technique.
Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study.
Sex
View SamplesWe used microarrays to detail the global program of gene expression during early hESC differentiation to mesendoderm using FBS, with and without RUNX1 depletion.
Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling.
Specimen part, Cell line
View SamplesThe onset and progression of breast cancer are linked to genetic and epigenetic changes that alter the normal programming of cells. Epigenetic modifications of DNA and histones contribute to chromatin structure that results in the activation or repression of gene expression. Several epigenetic pathways have been shown to be highly deregulated in cancer cells. Targeting specific histone modifications represents a viable strategy to prevent oncogenic transformation, tumor growth or metastasis. Methylation of histone H3 lysine 4 has been extensively studied and shown to mark genes for expression; however this residue can also be acetylated and the specific function of this alteration is less well known. To define the relative roles of histone H3 methylation (H3K4me3) and acetylation (H3K4ac) in breast cancer, we determined genomic regions enriched for both marks in normal-like (MCF10A), transformed (MCF7) and metastatic (MDA-MB-231) cells using a genome-wide ChIP-Seq approach. Our data revealed a genome-wide gain of H3K4ac associated with both early and late breast cancer cell phenotypes, while gain of H3K4me3 was predominantly associated with late stage cancer cells. Enrichment of H3K4ac was overrepresented at promoters of genes associated with cancer-related phenotypic traits, such as estrogen response and epithelial-to-mesenchymal transition pathways. Our findings highlight an important role for H3K4ac in predicting epigenetic changes associated with early stages of transformation. In addition, our data provide a valuable resource for understanding epigenetic signatures that correlate with known breast cancer-associated oncogenic pathways. Overall design: RNA-Seq of cell lines MCF10A, MCF7 and MDA-MB-231.
Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis.
Specimen part
View Samples