Primary bile acids are produced in the liver whereas secondary bile acids such as lithocholic acid (LCA) are generated by gut bacteria from primary bile acids that escape the ileal absorption. Besides their well-known function as detergents in lipid digestion, bile acids are important signaling molecules mediating effects on the hosts metabolism. As energy metabolism is closely linked to aging and longevity we supplemented fruit flies (Drosophila melanogaster) with 50 mol/l LCA either for 30 days or throughout their lifetime. LCA supplementation resulted in a significant induction of the mean (+12 days), median (+10 days) and maximum lifespan (+ 11 days) in comparison to untreated control flies. This lifespan extension was accompanied by an induction of spargel (srl), the fly homolog of mammalian PPARG co-activator 1a(PGC1A. In srl mutant flies, LCA failed to induce longevity emphasizing the essential role of srl in the observed lifespan extension. In addition, the administration of antibiotics to wild type flies abrogated LCA-mediated effects on both lifespan and srl expression, suggesting a substantial contribution of the intestinal microbiota to the LCA-induced longevity.
Lithocholic Acid Improves the Survival of Drosophila Melanogaster.
Sex, Age, Specimen part
View SamplesThe molecular chaperons FK506-binding proteins (Fkbps) comprise one of three families of peptidyl prolyl isomerases, which promote the transition between cis- and trans-conformations of peptidyl prolyl bonds. Mouse Fkbp family is composed of at least 15 members, but the functions of the large family in cell proliferation and differentiation remain elusive. During myoblast differentiation, the cells need to exit the cell cycle before fusion and terminal differentiation to form myotubes. The clear distinction between proliferation and differentiation provides an ideal model with which to investigate the roles of Fkbps in these two cell biological events. We found that depletion of FkbpC in mouse myoblasts delayed the exit from the cell cycle and expression of myotube-specific genes, whereas its overexpression caused opposite effects. At a mechanistic level, our study revealed a crucial function of FkbpC in Cdk4 activation during myoblast proliferation. Cdk4 undergoes conformational changes in the HSP90/Cdc37/Cdk4 complex as a prerequisite for activation through binding to CyclinD1 accompanied by phosphorylation. Our results showed that FkbpC depletion released Cdk4 from the HSP90 complex, which increased the Cdk4/CyclinD1 complex in myoblasts and sustained high levels of phosphorylated Cdk4 and Rb during differentiation. These results explain the delayed cell cycle exit and differentiation in the depleted cells. In addition, after synchronizing the cell cycle of myoblasts we found dynamic changes of the amounts of FkbpC and Cdk4 in the HSP90 complex during the G1/S transition. Knockout mice of FkbpC demonstrated delayed muscle regeneration after chemical damage, providing an in vivo evidence for the essential role of FkbpC in muscle differentiation. Collectively, our study uncovered FkbpC's critical function as a novel switch regulating the transition from proliferation to differentiation through controlling one of the central regulators of proliferation, Cdk4. Overall design: mRNA profiles of Fkbp4 knockdown, Fkbp5 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Promotion of Myoblast Differentiation by Fkbp5 via Cdk4 Isomerization.
Specimen part, Cell line, Subject, Time
View SamplesCircadian rhythms regulate cell proliferation and differentiation; however, little is known about their roles in myogenic differentiation. Our synchronized differentiation studies demonstrate that myoblast proliferation and subsequent myotube formation by cell fusion occur in circadian manners. We found that one of the core regulators of circadian rhythms Cry2, but not Cry1, is critical for the circadian patterns of these two critical steps in myogenic differentiation. This is achieved through the specific interaction between Cry2 and Bclaf1, which stabilizes mRNAs encoding cyclin D1, a G1/S phase transition regulator, and Tmem176b, a transmembrane regulator for myogenic cell fusion. Myoblasts lacking Cry2 display premature cell cycle exit and form short myotubes due to inefficient cell fusion. Consistently, muscle regeneration is impaired in Cry2-/- mice. Bclaf1 knockdown recapitulated the phenotypes of Cry2 knockdown: early cell cycle exit and inefficient cell fusion. This study uncovers a post-transcriptional regulation of myogenic differentiation by circadian rhythms. Overall design: mRNA profiles of Cry1 knockdown, Cry2 knockdown and control C2C12 cells at d0, d3 and d5 were generated by using Illumina HiSeq2500.
Cry2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.
Sex, Specimen part
View SamplesThese gene expression microarrays were performed as part of a project aiming to integrate quantitative proteomic, gene expression and epigenetic data from the childhood brain tumor medulloblastoma.
Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.
Sex, Specimen part
View SamplesWe Report the genome-wide RNA expression levels in control and schizophrenia hiPSC dervied NPC treated with neuronal media for 2 days. In total about 15,000 gene expression were detected in all samples, of which 1349 were dysregualted. Overall design: Examination, identification and comparision of mRNA expression profliles in control and schizophrenia npc
Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).
Specimen part, Subject
View SamplesSarcoidosis + Follow-up 6 month after
Functional genomics and prognosis in sarcoidosis--the critical role of antigen presentation.
No sample metadata fields
View SamplesCanonical Wnt signalling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role of Wnt signalling has been subject of much debate, with positive and negative roles of Wnt signalling proposed for hematopoietic stem cells (HSC). As we have shown previously, this controversy can be largely explained by the effects of different dosages of Wnt signalling. What remained unclear however, was why high Wnt signals would lead to loss of reconstituting capacity. To better understand this phenomenon, we have taken advantage of a series of hypomorphic mutant Apc alleles resulting in a broad range of Wnt dosages in HSCs, purified those HSCs and performed whole genome gene expression analyses. Gene expression profiling and functional studies show that HSCs with APC mutations lead to high Wnt levels , enhanced differentiation and diminished proliferation, but have no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations and Wnt signalling in HSC biology. As Wnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings also have clinical ramifications.
High Levels of Canonical Wnt Signaling Lead to Loss of Stemness and Increased Differentiation in Hematopoietic Stem Cells.
No sample metadata fields
View SamplesSamples collected from human subjects in clinical trials possess a level of complexity, arising from multiple cell types, that can obfuscate the analysis of data derived from them. Blood, for example, contains many different cell types that are derived from a distinct lineage and carry out a different immunological purpose. Failure to identify, quantify, and incorporate sources of heterogeneity into an analysis can have widespread and detrimental effects on subsequent statistical studies.
Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples.
Sex, Specimen part
View SamplesA LysM Receptor-like Kinase Mediates Chitin Perception and Fungal Resistance in Arabidopsis
A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
No sample metadata fields
View Samples