Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50 % of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.
Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance.
Specimen part, Treatment
View SamplesWe obtained global measurements of decay and translation rates for mammalian mRNAs with alternative 3'' untranslated regions (3'' UTRs). Overall design: 1 3P-Seq sample from 3T3 cells and 1 3P-Seq sample from mouse ES cells; 2 2P-Seq steady state and 4 2P-Seq with actinomycin D; 6 polysome fraction 2P-Seq
3' UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts.
Specimen part, Treatment, Subject
View SamplesWe used microarrays to measure the expression levels of genes in irradiated immortalized B cells, lymphoblastoid cells, from members of Centre d'Etude du Polymorphisme Humain (CEPH) Utah pedigrees. Data were collected for cells at baseline and 2 hour and 6 hour after exposure to 10 Gy of ionizing radiation (IR).
Genetic analysis of radiation-induced changes in human gene expression.
Specimen part, Treatment
View SamplesThe accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in the condition called ER stress which induces the unfolded protein response (UPR) which is a complex cellular process that includes changes in expression of many genes. Failure to restore homeostasis in the ER is associated with human diseases. To identify the underlying changes in gene expression in response to ER stress, we induced ER stress in human B-cells and then measured gene expression at 10 time-points. We followed up those results by studying cells from 60 unrelated people. We rediscovered genes that were known to play a role in ER stress response and uncovered several thousand genes that are not known to be involved. Two of these are VLDLR and INHBE which showed significant increase in expression following ER stress in B-cells and
Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells.
Cell line, Subject, Time
View SamplesWe profiled genome-wide gene expression of 170 individual mid-gestation (embryonic day 11.5) whole mouse embryos derived from a 2-generation interspecies mouse cross and asked to what extent genetic variation drives four important parameters of regulatory architecture: allele-specific expression (ASE), imprinting, trans-regulatory effects, and maternal effect. The inbred strain C57BL/6J and wild-derived inbred strain CAST/EiJ were used in reciprocal crosses to generate F1 embryos. F1 progeny were backcrossed to C57BL/6J in reciprocal crosses to generate 154 N2 embryos. We employed a backcross design, in which N2 offspring have genotypically distinct parents, to enable comparison of gene expression for offspring from each side of the reciprocal cross. Our findings demonstrate that genetic variation contributes to widespread gene expression differences during mammalian embryogenesis. Overall design: Transcriptome analysis of E11.5 mouse embryos: 16 F1 embryos from reciprocally crossed C57BL/6J and CastEi/J parents; and 154 N2 embryos from reciprocal backcross of F1s to the C57BL/6J parent.
Constraint and divergence of global gene expression in the mammalian embryo.
No sample metadata fields
View SamplesWe investigated the RNA expression levels of NF-kB ligands and their receptors in epithelial cancer cells and cancer-associated fibroblasts (CAFs) from KPC tumors Overall design: We analysed 8 samples total (2 biological replicates. Each replicate with 2 conditions: DAPI- sorted cells (all live cells) and DAPI-CD45-CD31-EpCAM-PDPN+ sorted cells (CAFs). Each condition with 2 technical replicates.
IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View SamplesCrossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes (paternal excess) associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View SamplesThe aim of the study was to identify in vivo spermatogonial gene expression within the context of their biological niche.
Screening for biomarkers of spermatogonia within the human testis: a whole genome approach.
Specimen part
View SamplesPurpose: To evaluate the presence of a gene expression signature present before treatment as predictive of response to treatment with MAGEA3
Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy.
Specimen part
View Samples