To characterize the potential molecular pathway(s) affected by iron treatment and identify the one(s) responsible for C3 induction, we performed a whole genome microarray on untreated ARPE-19 cells and cells treated with 250 M FAC for 48h/2d.
Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.
Cell line, Treatment
View SamplesMicroarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated retinal pigment epithelium (RPE). With the advent of microarrays representing most of the transcriptome and techniques to obtain RNA from the isolated RPE monolayer, we have probed the response of the RPE and neurosensory retina (NSR) to light damage.
Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE.
Sex, Specimen part, Treatment
View SamplesLoss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly.
Cell intrinsic alterations underlie hematopoietic stem cell aging.
No sample metadata fields
View SamplesTotal RNA extracted from prostate cancer LNCaP cells transfected with siRNA against CTCF(siCTCF), or negative control siRNA (si-)were processed, and sequenced by two different companies using Illumina Hi-seq 2000 platform to generate RNA sequencing with two output sequences: paired-end 50bp and 101bp in read length. Nearly 100 million and 50 million raw reads were yielded from each sample respectively. We used FastQC to confirm the quality of raw fastq sequencing data, and SOAPfuse software to detect fusion transcripts. Overall design: Discovering fusion genes from siCTCF and si- in LNCaP cells.
Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells.
No sample metadata fields
View SamplesIn previous studies, it was observed that survivors who received stem cell transplantation and whole body irradiation showed development of NAFLD as a chronic effect.
Decreased Hepatic Lactotransferrin Induces Hepatic Steatosis in Chronic Non-Alcoholic Fatty Liver Disease Model.
Sex, Age, Specimen part
View SamplesWe analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in kidney and brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in human to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.
Transcriptional profiling of aging in human muscle reveals a common aging signature.
Sex
View SamplesHere, we focused on the intermediate stages of SCR by comparing the somatic cell line induced by OCT4, SOX2, and KLF4 (OSK) for 7 days with mouse embryonic fibroblasts (MEFs), iPSCs, and embryonic stem cells (ESCs). Transcriptional profiles of these four cell lines were analyzed by microarray, and we found that the transition process from day 7 to the formation of iPSCs is crucial for SCR and that the reverse expression patterns can provide more candidate markers to distinguish ESCs and somatic cells iPSC. Data confirmed that the viral infection results in defense innate immunity, DNA damage, and apoptosis in MEFs, which slows down cell proliferation and immortalization to inhibit SCR. Although SCR is initiated by OSK, the p53 signaling pathway can affect the transcriptional regulatory networks through cell cycle and genomic instability as a powerful core node.
Global transcriptional analysis of nuclear reprogramming in the transition from MEFs to iPSCs.
Sex, Specimen part
View SamplesMicroRNA regulation of the bovine local and systemic monocyte transcriptional responses to an in vivo Streptococcus uberis challenge Overall design: Milk and blood isolated CD14+ monocyte cells taken from 5 infected Holstein friesians and 5 control Holstein friesians. Five animal infected with live S. uberis, cells extracted at 0, 12, 24, 36, and 48 hours post infection.
MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.
Specimen part, Subject, Time
View SamplesMicroRNAs are amplifiers of monocyte inflammatory networks and repressors of metabolism Overall design: Milk and blood isolated CD14+ monocyte cells taken from 5 infected Holstein friesians and 5 control Holstein friesians. Five animal infected with live S. uberis, cells extracted at 0, 12, 24, 36, and 48 hours post infection.
MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.
Specimen part, Subject, Time
View SamplesTranscriptome dynamics of nucellus in early maize seed
High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development.
Age, Specimen part
View Samples