Human embryonic stem cells (hESC) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESC we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm biased stem cell state. Overall design: Examination of 4 different cell substates within one human embryonic stem cell line as determine by the expression status of GATA6 and SSEA3
Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells.
Specimen part, Subject
View SamplesThe human genome contains approximately 27,700 CpG islands (CGIs). Most are associated with promoters and their DNA is nearly always unmethylated. By contrast, CGIs lying within the bodies of genes usually become methylated during differentiation and development. CGIs also normally become methylated at X-inactivated and imprinted genes and abnormally methylated in genome rearrangements and in malignancy. In such circumstances, methylation of CGIs is often associated with RNA transcripts reading through these elements but the relationship of this RNA to methylation of CGIs is not clear. Here we investigated a previously described form of a-thalassemia caused by a genome rearrangement leading to abnormal transcription and DNA methylation of the CGI at the promoter of the a-globin gene. We show that transcription per se is responsible for DNMT3B-mediated methylation of the globin CGI, and that this is a general mechanism responsible for methylation of most intragenic CpG islands. Overall design: CapSeq was performed on day 7 in vitro differentiated EBs containing the human gene sequence of RHBDF1 with (RHBDF1+P; chr16:47,861-63,210, hg18) or without (RHBDF1-P; chr16:47,911-60,819, hg18) its promoter in the a recombination mediated cassette exchange (RMCE) system established within the mouse a-globin locus (Lynch et al., 2012, DOI: 10.1038/emboj.2011.399 ) to map transcription initiation sites within the transgene. Please note that the Cap-seq methods captures the 5' end of any short RNA that was Capped, capturing both coding and non-coding RNA.
DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease.
Specimen part, Cell line, Subject
View SamplesMany genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. These super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the a-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. Overall design: Mouse fetal liver erythroid RNA-seq. The RNA of the erythroid cells was metabolically labelled using 4-thiourdine nucleotide analogue supplementation of viable cells in culture. RNA transcripts that incorporated the analogue and hence were synthesised during this period of exposure, were then isolated from the pre-exiting bulk RNA by the addition of a biotin moiety and pull down.
Genetic dissection of the α-globin super-enhancer in vivo.
Specimen part, Subject
View SamplesHuman cytomegalovirus induces a pro-inflammatory monocyte following infection. To begin to address how HCMV induces these rapid changes in infected monocytes, we examined the transcriptome of infected monocytes. Global transcriptional profiling using cDNA microarrays revealed a significant number of pro-inflammatory genes were upregulated within 4 hours post infection.
Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage.
Specimen part
View SamplesAdult zebrafish are capable of regenerating cardiac tissue following ventricular resection within 30 days. We profiled both small RNA and mRNA expression in uninjured (0dpa), 1, 3, 7, 14, 21 and 30 days post amputation to study biological processes orchestrate each stage of regeneration. Overall design: Small and mRNA gene expression profiling during 0, 1, 3, 7, 14, 21 and 30 days post ventricular resection.
RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa.
Specimen part, Cell line, Subject
View SamplesThe chronological lifespan (CLS) of Saccharomyces cerevisiae is defined as the number days that non-dividing cells remain viable, typically in stationary phase cultures or in water. CLS is extended by restricting glucose in the starting cultures, and is considered a form of caloric restriction (CR). Through a previous genetic screen our lab determined that deleting components of the de novo purine biosynthesis pathway also significantly increased CLS. Significant similarities in gene expression profiles between calorie restricted WT cells and a non-restricted ade4 mutant suggested the possibility of common gene expression biomarkers of all chronologically long lived cells that could also provide insights into general mechanisms of lifespan extension. We have identified additional growth conditions that extend CLS of WT cells, including supplementation of the media with isonicotinamide (INAM), a known sirtuin activator, or by supplementation with a concentrate collected from the expired media of a calorie restricted yeast culture, presumably due to an as yet unidentified longevity factor. Using these varied methods to extend CLS, we compared gene expression profiles in the aging cells (at day 8) to identify functionally relevant biomarkers of longevity. Nineteen genes were differentially regulated in all 4 of the long-lived populations relative to wild type. Of these 19 genes, viable haploid deletion mutants were available for 16 of them, and 12 were found to have a significant impact on CLS.
Functional genomic analysis reveals overlapping and distinct features of chronologically long-lived yeast populations.
No sample metadata fields
View SamplesPrevious studies had shown that integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL "hotspots" associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provides a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. Overall design: 282 samples, 3 biological replicates per strain
Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes.
Sex, Cell line, Subject
View SamplesWe decribe the accessible chormatin landscape in RAS-induced (RIS) and NOTCH induced senescence (NIS) using ATAC-seq. By expressing active NOTCH (N1ICD) in the context of RIS, we find that N1ICD antagonises the formation of accessible regions in RIS. By performing co-cultures, we demonstrate that cells expressing a NOTCH1 ligand, JAGGED1, can antagonise the formation of RIS specific accessible regions. Overall design: mRNA profiles were IMR90 cells expressing ER:HRAS(G12V) and a control vector or MSCV miR30 shHMGA1 were generated. 6 biological replicates.
NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.
Cell line, Subject
View SamplesThe meningeal space is occupied by a diverse repertoire of innate and adaptive immune cells. CNS injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation in CNS injury remains poorly understood. Here we describe group 2 innate lymphoid cells (ILC2s) as a novel cell type resident in the healthy meninges that is activated following CNS injury. ILC2s are present throughout the naïve mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile relative to lung ILC2s. After spinal cord injury, meningeal ILC2s are activated in an IL-33 dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild type lung-derived ILC2s into the meningeal space of IL-33R-/- animals improves recovery following spinal cord injury. These data characterize ILC2s as a novel meningeal cell type that responds to and functionally affects outcome after spinal cord injury, and could lead to new therapeutic insights for CNS injury or other neuroinflammatory conditions. Overall design: ILC2s were isolated from 10 week C57/Bl6 mice with and without spinal cord injury (1 day post injury). 5 mice were pooled per group, with meninges dissected, digested, and FACs sorted (CD45+/DAPI-/Lin–/St2+/Thy1+) directly into RNA lysis buffer.
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury.
Age, Specimen part, Cell line, Subject
View SamplesThe molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinsons disease (PD) are not completely understood. Here we use microarrays and mass spectrometry to study the transcriptomic and proteomic changes in the striatum of two mouse models of PD induced by distinct neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Transcripts and proteins were found with similar abundance changes in both models which may be involved in the pathophysiology of PD. GFAP transcript and protein levels were significantly up-regulated by both neurotoxins, confirming the known astrocytic response to these drugs. Other genes and proteins were idiosyncratic in their responses to the two toxins, suggesting specific toxicological responses. Comparing transcript and protein levels revealed that efficiently translated genes used more commonly occurring codons than inefficiently translated genes. Additionally, a potential role was found for miRNAs in translational control in the striatum. The results constitute one of the largest datasets integrating transcript and protein changes for these two neurotoxin models with many similar endpoint phenotypes but distinct pathologies. Using multiple toxins while examining proteins and transcripts can be an effective method of delineating the molecular pathology of neurodegenerative diseases.
Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease.
Sex, Age, Specimen part
View Samples