RNAseq analysis of CD40 + IgM in vitro-stimulated (6 hours) murine relafl/flCD19-Cre (furtheron designated as RELA) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor RELA in activated B cells. Overall design: Splenic B cells from 12-week old relafl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesRNAseq analysis of CD40 + IgM in vitro-stimulated (6 hours) murine relfl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor c-REL in activated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 6 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesRNAseq analysis of CD40 + IgM in vitro-stimulated (24 hours) murine relfl/flCD19-Cre (furtheron designated as REL) and CD19-Cre (furtheron designated as WT) splenic B cells identifies genes regulated by the transcription factor c-REL in activated B cells. Overall design: Splenic B cells from 12-week old relfl/flCD19-Cre and CD19-Cre littermate mice were isolated by magnetic cell separation from splenic mononuclear cells and stimulated in vitro for 24 hours with anti-CD40 and anti-IgM. RNA was isolated and submitted for RNA-sequencing on an Illumina HiSeq2000 instrument for 30 million single-ended reads.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
No sample metadata fields
View SamplesGene expression profiling of murine eGFP+ relfl/flCg1-Cre and eGFP Cg1-Cre splenic germinal center B cells identifies genes regulated by the transcription factor c-REL in germinal center B cells.
Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits.
Age, Specimen part, Time
View SamplesDuring transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a “checkpoint” during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo. Overall design: Total RNA was collected from wild-type and analog-sensitive Kin28 strains treated with reversible inhibitor 1-NAPP-1, irreversible inhibitor CMK, and solvent control DMSO. Equivalent ratios of S. pombe : S. cerevisiae cells were added to each sample before RNA extraction for normalization of read counts after sequencing. Nascent RNA was purified from total RNA by 4-thiouracil labeling, biotinylation, and streptavidin-pulldown. As a negative control, nascent RNA was also extracted from total RNA from cells that had not been treated with 4-thiouracil.
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.
Cell line, Treatment, Subject
View SamplesGene expression profiling of murine irf4-/- and irf4+/+ splenic B cells identifies genes regulated by the transcription factor IRF4 in quiescent mature B cells.
IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity.
Specimen part
View SamplesThe transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 cobound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations, IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of "kinetic control" in which signaling-induced dynamics of IRF4 in activated B cells control their cell-fate outcomes.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.
Specimen part, Treatment
View SamplesTemporal analysis of B cell activation in vitro using CD40L and IL-2/4/5 cytokines in wild type Irf4+/+ B cells or in mutant Irf4-/- B cells harboring a tet-inducible allele of Irf4. IRF4 expression was restored, or not, in the Irf4-/- background by culturing in the presence of low or high concentrations of doxycycline. The results provide insight in the role of IRF4 expression levels in coordinating different programs of B cell differentiation.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4.
Specimen part, Treatment
View SamplesProprioception relies on two main classes of proprioceptive sensory neurons (pSNs). These neurons innervate two distinct peripheral receptors in muscle, muscle spindles (MSs) or Golgi tendon organs (GTOs), and synapse onto different sets of spinal targets, but the molecular basis of their distinct pSN subtype identity remains unknown.
The PDZ-domain protein Whirlin facilitates mechanosensory signaling in mammalian proprioceptors.
Sex, Specimen part
View SamplesMouse ES cells were stably transduced with a lentivirus expressing either wild-type KBP or the stable mutant KBP(KK/RR) and maintained in self-renewing growth conditions. RNA-seq was performed to assess mRNA expression differences caused by the stabilization of KBP. Overall design: 6 samples [a triplicate set for ES cells expressing wild-type KBP and a triplicate set expressing KBP(KK/RR)] were analyzed.
The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells.
Specimen part, Subject
View Samples