The undifferentiated state of pluripotent stem cells depends heavily on the culture conditions. We show that a unique combination of small molecules, SMC4, added to culture conditions converts primed pluripotent stem cells to a more nave state. By conducting Affymetix analysis we show of majority of lineage markers are repressed in SMC4 culture.
A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.
Sex, Age, Specimen part, Treatment
View SamplesWe identified Pparg as a major orchestrator of the phenotype of adipose-tissue resident regulatory T cells (VAT Tregs). To establish the role of Pparg in shaping the VAT Tregs gene profile and cell dynamics, Tregs from lymph nodes and visceral adipose tissue of mice sufficient and deficient of Pparg expression in Tregs were double sorted for microarray analysis.
PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.
Sex, Age, Specimen part
View SamplesWe identified Pparg as a major orchestrator of the phenotype of adipose-tissue resident regulatory T cells (VAT Tregs). To explore the contribution of Pparg1 and 2 in the generation of the VAT Tregs-specific gene signatures, CD4+FoxP3- T cells were transduced with Foxp3+/- Pparg1 (or Pparg2), treated with Pioglitazone or vehicle, and double sorted for microarray analysis.
PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells.
Sex, Age, Specimen part, Treatment
View SamplesAlveolar soft-part sarcoma (ASPS) is an extremely rare, highly vascular soft tissue sarcoma affecting predominantly adolescents and young adults. In an attempt to gain insight into the pathobiology of this enigmatic tumor, we performed the first genome-wide gene expression profiling study.
Gene expression profiling of alveolar soft-part sarcoma (ASPS).
No sample metadata fields
View SamplesType 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, and it is important to find new alternative source of the islet beta cells to replace the damaged cells. Human embryonic stem (hES) cells possess unlimited self-renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES-T3 cells with normal female karyotype were first differentiated into embryoid bodies and then induced to generate the pancreatic islet-like cell clusters, which expressed pancreatic islet cell-specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the pancreatic islet-like cell clusters were further analyzed and compared with those of undifferentiated hES-T3 cells and differentiated embryoid bodies. MicroRNAs negatively regulate the expression of protein-coding mRNAs. The pancreatic islet-like cell clusters were found to exhibit very high expression of microRNAs miR-186, miR-199a and miR-339, which down-regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs are very likely to play important regulatory roles in the differentiation of pancreatic islet cells and early embryonic development.
Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells.
Sex, Disease, Cell line
View SamplesAging is associated with mitochondrial dysfunction and insulin resistance. We conducted a study to determine the role of long-term vigorous endurance exercise on age-related changes in insulin sensitivity and various indices of mitochondrial functions.
Endurance exercise as a countermeasure for aging.
No sample metadata fields
View SamplesIt has been known for some time that muscle repair potential becomes increasingly compromised with advancing age, and that this age-related defect is associated with reduced activity of muscle satellite cells and with the presence of chronic, low grade inflammation in the muscle. Working from the hypothesis that a heightened inflammatory tone in aged muscle could contribute to poor regenerative capacity, we developed genetic systems to inducibly alter inflammatory gene expression in satellite cells or muscle fibers by modulation of the activity of nuclear factor B (NF-B), a master transcriptional regulator of inflammation whose activity is upregulated in many cell types and tissues with age. These studies revealed that activation of NF-B activity in muscle fibers, but not in satellite cells, drives muscle dysfunction and that lifelong inhibition of NF-B activity in myofibers preserves muscle regenerative potential with aging via cell-non-autonomous effects on satellite cell function. Further analysis of differential gene expression in muscles with varying NF-B activity identified a secreted phospholipase (PLA2G5) as a myofiber-expressed NF-B-regulated gene that governs muscle regenerative capacity with age. Together, these data suggest a model in which NF-B activation in muscle fibers increases PLA2G5 expression and drives the impairment in regenerative function characteristic of aged muscle. Importantly, inhibition of NF-B function reverses this impairment, suggesting that FDA-approved drugs, like salsalate, a prodrug form of sodium salicylate, may provide new therapeutic avenues for elderly patients with reduced capacity to recover effectively from muscle injury.
Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function.
Age
View SamplesThis study was designed to identify candidate genes associated with iron efficiency in soybeans. Two genotypes, Clark (PI548553) and IsoClark (PI547430), were grown in both iron sufficient (100uM Fe(NO3)3) and iron deficient (50uM Fe(NO3)3) hydroponics conditions. The second trifoliate was harvested for RNA extraction for the microarray experiment. Candidate genes were identified by comparing gene expression profiles within genotypes between the two iron growth conditions.
Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response.
No sample metadata fields
View SamplesComparisons of global gene-expression profiles revealed a greater distinction between CD4+ Treg cells and CD4+ conventional (Tconv) T cells residing in abdominal (epidydimal) fat versus in more standard locations such as the spleen, thymus and LN.
Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.
Specimen part
View Samples