The pancreatic beta cells are the only cells that can produce insulin in response to prevailing glycemia. The development of beta cells was found to be depending on the activity of a complex genetic network. Overexpression of transcriptional factor MafK in beta cells have resulted in impairment of thier functions and suppressed insulin secretion and increased the severity of beta cell loss resulting in an overt diabetes.
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development.
Specimen part
View SamplesWhole-transcriptome survey of gene expression differences between germ-free (GF) and conventionally raised (CONV-R) mice.
The gut microbiota modulates host amino acid and glutathione metabolism in mice.
Specimen part
View SamplesAging is associated with mitochondrial dysfunction and insulin resistance. We conducted a study to determine the role of long-term vigorous endurance exercise on age-related changes in insulin sensitivity and various indices of mitochondrial functions.
Endurance exercise as a countermeasure for aging.
No sample metadata fields
View SamplesIdentifying the functions of proteins, which define specific subnuclear structures and territories, is important for understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML bodies and co-localizes with the proto-oncogenic protein PML and Daxx, proteins with critical roles in oncogenic transformation, interferon-mediated viral resistance and response to PML-directed cancer therapeutics. Sp100 isoforms contain PHD, Bromo and HMG domains and are highly sumoylated at ND10/PML bodies, all characteristics suggestive of a role in chromatin mediated gene regulation. However, no clear role for the Sp100 component of PML bodies in oncogenesis has been defined. Using isoform-specific knockdown techniques, we show that most human diploid fibroblasts, which lack Sp100, rapidly senesce and discuss gene expression changes associated with this rapid senescence.
Sp100 as a potent tumor suppressor: accelerated senescence and rapid malignant transformation of human fibroblasts through modulation of an embryonic stem cell program.
Cell line, Treatment
View SamplesWe report a 29-gene diagnostic signature, which distinguishes individuals with NSCLC from controls with non-malignant lung disease with 91% Sensitivity, 79% Specificity and a ROC AUC of 92%. Accuracy on an independent set of 18 NSCLC samples from the same location was 79%. Samples from an independent location including 12 stage 1 NSCLC and 15 controls, achieved an accuracy of 74%. A study of 18 paired samples taken pre and post surgery shows that the PBMC associated cancer signature is significantly reduced after tumor removal, supporting the hypothesis that the signature detected in pre-surgery samples is a response to the presence of the tumor.
Gene expression profiles in peripheral blood mononuclear cells can distinguish patients with non-small cell lung cancer from patients with nonmalignant lung disease.
Sex, Age, Race
View SamplesGene expression signatures were measured in logarithmic growing cultures
Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF.
Specimen part
View SamplesTo generate an unbiased view of changes to the retinal gene network in Neurog2 retinal mutants, we generated and compared the P2 transcriptomes from control, heterozygote and mutant mice. A pair of P2 retinas from each biologic replicate were used to produce libraries for high throughput sequencing (n = 5 biologic replicates/genotype). Reads were aligned with BWA and Bowtie programs to the mm10 genome. Aligned reads were then analyzed for differentially expressed transcripts using the CuffDiff program in the Galaxy online bioinformatics package (www.usegalaxy.org). Overall design: Total RNA from Neurog2CKO/CKO(wildtype; n = 5), Chx10Cre;Neurog2CKO/+(heterozygote; n = 5), and Chx10Cre;Neurog2CKO/CKO(mutant; n = 5) P2 retinas.
Requirements for Neurogenin2 during mouse postnatal retinal neurogenesis.
Specimen part, Cell line, Subject
View SamplesMany new alternative splice forms have been detected at the transcript level using next generation sequencing (NGS) methods, especially RNA-Seq, but it is not known how many of these transcripts are being translated. Leveraging the unprecedented capabilities of NGS, we collected RNA-Seq and proteomics data from the same cell population (Jurkat cells) and created a bioinformatics pipeline that builds customized databases for the discovery of novel splice-junction peptides. Results: Eighty million paired-end Illumina reads and ~500,000 tandem mass spectra were used to identify 12,873 transcripts (19,320 including isoforms) and 6,810 proteins. We developed a bioinformatics workflow to retrieve high-confidence, novel splice junction sequences from the RNA data, translate these sequences into the analogous polypeptide sequence, and create a customized splice junction database for MS searching. Overall design: Jurkat T-cell mRNA was analyzed on an Illumina HiSeq2000. ~80 million paired end reads (2x200bp, ~350bp lengths) were collected.
Discovery and mass spectrometric analysis of novel splice-junction peptides using RNA-Seq.
Cell line
View SamplesLipid metabolic disarray in young and adult mice offspring's liver is induced by saturated fatty acids (SFA) but prevented by alpha linolenic acid (ALA, 18:3 3) in the maternal diet during pregnancy and lactation. The aim of the present study was to analyse the impact of maternal dietary ALA on the liver gene expression in the new-born offspring in comparison to a SFA diet. Methods: C57Bl6/J dams were fed with diets normal in calories but rich in ALA or SFA before mating and during pregnancy. Pups were sacrificed at birth and liver parameters were assessed. Gene expression was characterized by microarray analysis and validated by real time qPCR. Results: ALA compared to SFA in maternal diets during pregnancy, increased polyunsaturated fatty acids while differentially modified fatty acid desaturase activities in offspring liver. Overall, 474 and 662 genes from born pups liver, were differentially regulated by ALA and SFA compared to control diet (p<0.05; Fold change 2), respectively. Notably, Per3 was up-regulated by ALA whereas down-regulated by SFA, compared to control diet. Conclusions: ALA and SFA enriched diets differentially affect gene expression pattern in the offsprings liver. ALA in particular, upregulates genes associated to low adiposity.
Maternal Diet Enriched with α-Linolenic or Saturated Fatty Acids Differentially Regulates Gene Expression in the Liver of Mouse Offspring.
Specimen part, Disease, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.
Sex, Age, Cell line, Treatment
View Samples