Transcriptomes of mouse E12.5 primordial germ cells (PGCs), primordial germ cell-like cells (PGCLCs) isolated from 6-day culture embryoid bodies, and the precursor pluripotent stem cells [embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and epiblast-like cells (EpiLCs)
Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells.
Sex, Specimen part
View SamplesEmergence of antiestrogen-resistant cells in MCF-7 cells during suppression of estrogen signaling is a widely accepted model of acquired breast cancer resistance to endocrine therapy. To obtain insight into the genomic basis of endocrine therapy resistance, we characterized MCF-7 monoclonal sublines that survived 21-day exposure to tamoxifen (T-series sublines) or fulvestrant (F-series sublines) and sublines unselected by drugs (U-series). All T/F-sublines were resistant to the cytocidal effects of both tamoxifen and fulvestrant. However, their responses to the cytostatic effects of fulvestrant varied greatly, and their remarkably diversified morphology showed no correlation with drug resistance. mRNA expression profiles of the U-sublines differed significantly from those of the T/F-sublines, whose transcriptomal responsiveness to fulvestrant was largely lost. A set of genes strongly expressed in the U-sublines successfully predicted metastasis-free survival of breast cancer patients. Most T/F-sublines shared highly homogeneous genomic DNA aberration patterns that were distinct from those of the U-sublines. Genomic DNA of the U-sublines harbored many aberrations that were not found in the T/F-sublines. These results suggest that the T/F-sublines are derived from a common monoclonal progenitor that lost transcriptomal responsiveness to antiestrogens as a consequence of genetic abnormalities many population doublings ago, not from the antiestrogen-sensitive cells in the same culture during the exposure to antiestrogens. Thus, the apparent acquisition of antiestrogen resistance by MCF-7 cells reflects selection of preexisting drug-resistant subpopulations without involving changes in individual cells. Our results suggest the importance of clonal selection in endocrine therapy resistance of breast cancer.
Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor.
Specimen part, Cell line, Treatment
View SamplesUsing primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was confirmed using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 expression without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to separate stem and progenitor cells, RNA-seq identified unique gene signatures for the separate populations which may serve as biomarkers. Pathways enrichment in stem cells identified ribosome biogenesis and membrane estrogen-receptor signaling with NF?B signaling enriched in progenitors and these were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified cancer stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Overall design: Comparing RNA-seq gene profiles in label-retaining prostate stem cells and non-retaining progenitor cells
Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.
Specimen part, Subject
View SamplesThe aim was to carry out global analysis of gene expression changes occurring in the normal pubertal mouse mammary gland from the appearance to the regression of terminal end buds.
ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis.
Sex, Age, Specimen part
View SamplesTo obtain comprehensive information on 17beta-estradiol (E2) sensitivity of genes that are inducible or suppressible by this hormone, we designed a method that determines ligand sensitivities of large numbers of genes using DNA microarray and a set of simple Perl computer scripts implementing the standard metric statistics, and employed it to characterize effects of low (0-100 pM) concentrations of E2 on the transcriptome profile of MCF7/BUS human breast cancer cells, whose E2 dose-dependent growth curve saturated with 100 pM E2. Evaluation of changes in mRNA expression for all genes covered by the DNA microarray indicated that, at a very low concentration (10 pM), E2 suppressed 3~5 times larger numbers of genes than it induced, whereas at higher concentrations (30-100 pM) it induced 1.5~2 times more genes than it suppressed. Using clearly defined statistical criteria, E2-inducible genes were categorized into several classes based on their E2 sensitivities. This approach of hormone sensitivity analysis revealed that expression of two previously reported E2-inducible autocrine growth factors, TGF-? and SDF-1, was not affected by 100 pM and lower concentrations of E2 but strongly enhanced by 10 nM E2, which was far higher than the concentration that saturated the E2 dose-dependent growth curve of MCF7/BUS cells. These observations suggested that biological actions of E2 are derived from expression of multiple genes whose E2 sensitivities differ significantly and, hence, dependent on the E2 concentration especially when it is lower than the saturating level, emphasizing the importance of characterizing the ligand dose-dependent aspects of E2 actions. (paper abstract)
Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray.
No sample metadata fields
View SamplesYin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Although two homologous Drosophila YY family members (pleiohomeotic (pho)) and pleiohomeotic-like (phol)) are redundant, the functional significance of a recently described mammalian YY1-like gene (YY2) is unknown. Using microarray and gene set enrichment analysis (GSEA), we found that lentiviral constructs containing short hairpin loop YY1- and YY2-specific inhibitory RNAs (shYY1 and shYY2) caused significant changes in both redundant and distinguishable expression patterns. Ribosomal protein genes were the most significant gene set up-regulated by both shYY1 and shYY2, although combined shYY1/shYY2 knockdowns were not additive. In contrast, shYY2 reversed anti-proliferative effects of shYY1 on E2F target genes, and shYY2 particularly altered UV damage response, platelet-specific genes and mitochondrial function genes. The most YY2-specific gene was the platelet glycoprotein CD36 whose ligand is thrombospondin - a key UV response gene. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Taken together, our studies show that YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously thought to uniquely respond to YY1. Functions of thrombospondin and CD36 in inflammation, atherogenesis, innate immunity and malaria pathogenesis reveal new potential regulatory roles for YY1 and YY2.
Genome-wide analysis of YY2 versus YY1 target genes.
Cell line
View SamplesTo examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a) associated with changes in mRNA expression reflecting estrogenic actions and/or b) dependent on the estrogen receptor (ER), we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2) on fetal mammary tissues of wild type and ER knock-out mice.
Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.
Sex, Specimen part
View SamplesTranscriptome analysis of MCF-7 cells exposed for 48 hours to various concentrations of xenoestrogen chemicals.
Expressomal approach for comprehensive analysis and visualization of ligand sensitivities of xenoestrogen responsive genes.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesInduced pluripotent stem cells (iPSCs) can be generated by enforced expression of defined transcription factors in somatic cells. It remains controversial whether iPSCs are equivalent to blastocyst-derived embryonic stem cells (ESCs). Using genetically matched cells, we found that the overall mRNA expression patterns of these cell types are indistinguishable with the exception of a few transcripts encoded on chromosome 12qF1.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View Samples