Zinc-finger genes Fezf1 and Fezf2 encode transcriptional repressors. Fezf1 and Fezf2 are expressed in the early neural stem/progenitor cells and control neuronal differentiation in mouse dorsal telencephalon.
Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain.
Specimen part
View SamplesLiver cirrhosis is a strong risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes patients to tumorigenesis are not well understood. Transgenic mice expressing platelet-derived growth factor C (Pdgf-c) under the control of the albumin promoter provide a unique animal model that mimics the step-wise disease progression in humans from fibrosis to HCC. The livers of Pdgf-c Tg mice show evidence of liver injury, including inflammation, proliferation, fibrosis and steatosis, and as the mice age, angiogenesis and dysplasia. Eighty-five percent of these mice develop HCC spontaneously, and have reduced survival that is related to their liver pathology. Through measurement of protein, RNA, and histological markers, we provide evidence to support the hypothesis that changes in liver stromal cells play an essential role in tumorigenesis in this model. A paracrine signaling model is proposed where ectopic expression of Pdgf-c in hepatocytes results in activation of hepatic stellate cells, which subsequently activates endothelial and Kupffer cells. Activation of these non-parenchymal cells promotes the release of hepatocyte growth factors that, together with changes in extracellular matrix, lead to the formation of HCC. Pdgf-c Tg mice provide a useful pre-clinical model in which to test novel drugs for chronic liver disease and HCC that focus on blocking the processes that alter the liver's fibrotic microenvironment.
Paracrine activation of hepatic stellate cells in platelet-derived growth factor C transgenic mice: evidence for stromal induction of hepatocellular carcinoma.
Specimen part
View SamplesCollismycin A is a microbial product. We used microarrays to examine the effect of collismycin A on gene expression of HeLa cells.
Proteomic profiling reveals that collismycin A is an iron chelator.
Specimen part, Cell line
View SamplesSpecific deletion of suppressor of cytokine signaling 3 (Socs3) in keratinocytes can cause severe skin inflammation with infiltration of immune cells, however the molecular mechanisms and key regulatory pathways involved remains poorly understood. To investigate the role of Socs3 in keratinocytes, we generated and analyzed global RNA-Seq profiles in Socs3 conditional knockout (cKO) mice at two different stages (2- and 10- weeks). Over 400 shared genes were found to be significantly regulated at both time points. Two week samples were marked by initial skin barrier dysfunction established by the downregulation of keratin associated genes and upregulation of genes regulating lipid metabolism. Subsequent increase in expression level of multiple chemokines and cytokines at 10 week were observed representing response to skin inflammation caused by the disruption of skin barrier function. A group of activator protein-1 related genes were to found to be highly elevated in Socs3 cKO mice at both time points. This observation was duly validated using qRT-PCR in Socs3 depleted human keratinocyte–derived HaCaT cells. Overall this study reveals an important regulatory dynamics of Socs3 in skin barrier dysfunction. Overall design: Socs3 cKO mice mRNA profiles of 2 and 10 week wild type (WT) C57BL/6 mice were generated by sequencing using HiSeq 1000 system (Illumina) machine which could read a 50 bp sequence.
Insights into gene expression profiles induced by Socs3 depletion in keratinocytes.
Age, Specimen part, Cell line, Subject
View SamplesThe agonistic anti-human CD3 antibody , OKT-3, has been used to control acute transplant rejection. The in vivo administration of OKT-3 was previously shown to induce the partial depletion of T cells and anergy in the remaining CD4+ T cells. However, this therapy is also associated with the systemic release of several cytokines, which leads to a series of adverse side effects. We established a novel anti-human CD3 Ab, 20-2b2 (#1 abs), which recognized a close, but different determinant on the CD3 molecule from that recognized by OKT3. 20-2b2 was non-mitogenic for human CD4+ T cells, could inhibit the activation of T cells in vitro, and induced T cell anergy in in vivo experiments using humanized mice. Cytokine release in humanized mice induced by the administration of 20-2b2 was significantly less than that induced by OKT-3. Our results indicated that the CD3 molecule is still an attractive, effective, and useful target for the modulation of T cell responses. The establishment of other Abs that recognize CD3, even though the determinant recognized by those Abs may be close to or different from that recognized by OKT-3, may represent a novel approach for the development of safer Ab therapies using anti-CD3 Abs, in addition to the modification of OKT-3 in terms of the induction of cytokine production.
Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody.
Specimen part, Disease, Disease stage
View SamplesThe contribution of chronic antigen stimulation to the occurrence of lymphoproliferative disorder (LPD) with the gamma-delta T-cell lineage is unclear, despite the fact that Epstein-Barr virus (EBV) positive T-cell LPD is derived from antigen-stimulated cytotoxic T-cells. Given the possible association of antigen stimulation with the development of cytotoxic T-cell LPD, we compared gene expression patterns in Epstein-Barr virus (EBV)-positive gamma-delta T-cell lines derived from patients with nasal T-cell lymphoma and chronic active EBV infection and those in gamma-delta T-cells from healthy volunteers. Three EBV-positive gamma-delta T-cells lines, SNT cells (SNT-8, SNT-13 and SNT-15), were used in this study. SNT-8 was established from patients with nasal T-cell lymphoma and SNT-13, -15 were established from patients with chronic active EBV infection (Zhang Y, et al., Br J Cancer 94:599-608, 2006). All the SNT cells exhibits common rearrangement of Vgamma9-JgammaP and Jdelta3 genes. The gamma-delta T-cells obtained from healthy volunteers were expanded ex vivo by 1 microM of zoledronate (ZOL) plus IL-2 for 14 days incubation.
Aberrant expression of NK cell receptors in Epstein-Barr virus-positive gammadelta T-cell lymphoproliferative disorders.
No sample metadata fields
View SamplesTo better understand the molecular basis of the anticancer effects of acyclic retinoid (ACR), a genome-wide screening was applied to identify novel targets of ACR in human hepatocellular carcinoma (HCC) cells JHH7. Gene expression profiles of JHH7 were measured at 0h, 1h and 4 hours after treatment with1 M All-trans retinoic acid (AtRA) or 10 M ACR. Hierarchical clustering with Wards method of 44,907 genes demonstrated diverse expression changes in HCC cells treated with ACR for 4h. A total of 973 differentially expressed genes in response to ACR by comparing with AtRA for 4h treatments were identified with a fold change more than 2. Then, network analysis was performed on the altered gene expression profiles using Ingenuity Pathways Analysis (IPA) program. The most highly populated networks were associated with the regulation of cell cycle and DNA replication, as ACR is well known to induce apoptosis and suppress cell proliferation in HCC cells. Moreover, networks related with amino acid metabolism, protein synthesis and lipid metabolism, such as the biological network entitled Lipid Metabolism, Small Molecular Biochemistry, Vitamin and Mineral Metabolism were also observed. Of interest, this network contains genes that play critical roles in controlling the development of tissues and organs such as the nuclear orphan receptor nuclear receptor subfamily 2, group F, member 2 (NR2F2), suggesting potential drug targets to prevent/treat HCC.
Metabolome Analyses Uncovered a Novel Inhibitory Effect of Acyclic Retinoid on Aberrant Lipogenesis in a Mouse Diethylnitrosamine-Induced Hepatic Tumorigenesis Model.
Sex, Specimen part
View SamplesBackground. The in vivo distribution status and molecular signature of bone marrow mesenchymal stem cells (MSC) remain unknown, although ex vivo expanded MSC have been used in numerous studies.
Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry.
No sample metadata fields
View SamplesMany organisms acquired circadian clock system to adapt daily and seasonal environmental changes. Mammals have the master clock in the brains suprachiasmatic nucleus (SCN) that synchronizes other circadian clocks in the peripheral tissues or organs. Plants also have circadian clock in their bodies, but the presence of the tissue-specific functions of circadian clock is remained elusive. The aim of this experiment is to compare tissue-specific gene expression profile using gene expression Microarray.
Tissue-specific clocks in Arabidopsis show asymmetric coupling.
Specimen part, Time
View SamplesThe dermal papilla (DP) of the hair follicle plays crucial roles in the hair follcie morphogenesis and cycling. Thus, the elucication of human DP molecular signature is of great interest. DP cell culture by conventional method impairs intrinsic properties of DP cells.
Restoration of the intrinsic properties of human dermal papilla in vitro.
Sex, Age, Specimen part, Treatment
View Samples