This SuperSeries is composed of the SubSeries listed below.
Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.
Sex, Specimen part
View SamplesMicroRNAs (miRNAs) are a class of endogenous, non-coding RNAs that mediate post-transcriptional gene silencing by inhibiting mRNA translation and promoting mRNA decay. DICER1, an RNAse III endonuclease encoded by Dicer1, is required for processing short 21-22 nucleotide miRNAs from longer double-stranded RNA precursors. Here, we investigate the loss of Dicer1 in mouse postnatal male germ cells to determine how disruptions in the miRNA biogenesis pathway may contribute to infertility. Reduced levels of Dicer1 transcripts and DICER1 were confirmed in germ cell knock-out (GCKO) testes by postnatal day 18 (P18). Compared to wild-type (WT) at 8 weeks, GCKO males had no change in body weight, yet showed significant reductions in testis mass and sperm number. Histology and fertility tests confirmed spermatogenic failure in GCKO males. Array analyses at P18 showed 96% of miRNA genes were down-regulated and 37% of protein-coding genes were differentially expressed in GCKO testes. Interestingly, we observed preferential overexpression of genes on the sex chromosomes in GCKO testes, with more than 80% of the genes overlapping those proposed to undergo meiotic sex chromosome inactivation (MSCI) in the germ cells. Compared to WT, GCKO mice showed higher percentages of cells at early meiotic stages (leptotene and zygotene) but lower percentages at later stages (pachytene, diplotene and metaphase I), providing evidence that deletion of Dicer1 leads to disruptions in meiotic progression. Furthermore, we observed fewer elongating spermatids with proper translational activation of transition protein 2 (Tnp2), protamine 1 and 2 (Prm1 and Prm2) in GCKO testes after step 12-14. Therefore, deleting Dicer1 in early postnatal germ cells causes misregulation of transcripts encoded by genes on the sex chromosomes, impairs meiotic progression and post-meiotic translational control and results in spermatogenic failure and infertility.
Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.
Sex, Specimen part
View SamplesTo exmaine the PTHLH stimulated genes in Ca9-22 cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with empty vector or PTHLH expression vector. The raw data were normalized by GeneSpring GX software and up-load with raw values.
Parathyroid Hormone-Like Hormone is a Poor Prognosis Marker of Head and Neck Cancer and Promotes Cell Growth via RUNX2 Regulation.
Cell line
View SamplesHere we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells
Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.
Specimen part, Subject
View SamplesTo examine the transcription targets of RUNX2 in OSCC cells, we preformed the Affymetrix Human Genome U133 Plus 2.0 Array with ectopic RUNX2 or empty vectors in Ca9-22 cells.
Dysregulation of RUNX2/Activin-A Axis upon miR-376c Downregulation Promotes Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma.
Specimen part, Cell line
View SamplesWe conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.
Essential and redundant functions of caudal family proteins in activating adult intestinal genes.
Specimen part
View SamplesGenomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. NB N1E-115 cells with wildtype, overexpression, knockdown of Tcof1.
Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma.
No sample metadata fields
View SamplesAs Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity.
Transcriptome profile of Trypanosoma cruzi-infected cells: simultaneous up- and down-regulation of proliferation inhibitors and promoters.
No sample metadata fields
View SamplesTo invesigate the physiological roles of mir-122 in hepatocarcinogenesis, we performed expression profiling of the liver tumors of mir-122 knockout mice and the liver tissues of the control B6/129 mice.
MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis.
Age, Specimen part
View SamplesTo invesigate the physiology roles of mir-122 in liver, we performed expression profiling of mir-122 knockout mice and the control B6/129 mice.
MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis.
Age, Specimen part
View Samples