Gene expression analysis of two different mouse keratinocytes using RNA-Seq Overall design: RNA was collected and analyzed for two biological replicates each from two different mouse keratinocyte cell lines
Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes.
Specimen part, Cell line, Subject
View SamplesAnalysis of gene-probe expression data (FPKM) for HNSCC cell-lines using single-end RNA-Seq Overall design: RNA was collected and analyzed from 6 HNSCC cell-lines ( SCC15, SCC4, SCC71, UMSCC103, UMSCC29, SCC351)
A global analysis of the complex landscape of isoforms and regulatory networks of p63 in human cells and tissues.
No sample metadata fields
View SamplesWe investigated gene expression signatures in subcutaneous adipose tissue obtained from control subjects, premanifest HD gene carriers and manifest HD subjects with the aim to identify gene expression changes and signalling pathway alterations in adipose tissue relevant to HD.
Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease.
Sex, Age
View SamplesThe Acute Respiratory Distress Syndrome (ARDS)/Acute Lung Injury (ALI) was described 30 years ago, yet the interaction between specific sets of genes involved in this syndrome remains incompletely understood.
Discovery of the gene signature for acute lung injury in patients with sepsis.
No sample metadata fields
View SamplesEstrogen receptor a (ERa) is an important biomarker of breast cancer severity and a common therapeutic target. Recent studies have demonstrated that in addition to its role in promoting proliferation, ERa also protects tumors against metastatic transformation. Current therapeutics antagonize ERa and interfere with both beneficial and detrimental signaling pathways stimulated by ERa. The goal of this study is to uncover the dynamics of coding and non-coding RNA (microRNA) expression in response to estrogen stimulation and identify potential therapeutic targets that more specifically inhibit ERa-stimulated growth and survival pathways without interfering with its protective features. To achieve this, we exposed MCF7 cells (an estrogen receptor positive model cell line for breast cancer) to estrogen and prepared a time course of paired mRNA and miRNA sequencing libraries at ten time points throughout the first 24 hours of the response to estrogen. From these data, we identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of paired mRNA and microRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that over-expression of miR-503 suppresses breast cancer cell proliferation. Overall, these data indicate that miR-503 acts as a potent estrogen-induced tumor suppressor microRNA that opposes cellular proliferation and has promise as a therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression. Overall design: Quantification of mRNAs in MCF7 cells responding to estrogen following a period of estrogen starvation. Three independent biological replicates (30 samples: 3 replicates x 10 time points) of MCF7 cells were exposed to 10nM Estradiol for 0, 1, 2, 3, 4, 5, 6, 8, 12 , or 24 hours, and total RNA was extracted from the samples. Total RNA was used to generate paired RNA and miRNA sequencing. RNA libraries were prepared using an Illumina TruSeq stranded mRNA library preparation kit.
An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells.
No sample metadata fields
View SamplesThe epithelial-mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induced mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reversed these changes; as did silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibited similar metastases levels, but the cells with re-expressed H2A.X exhibited substantially elevated levels. We surmise that H2A.X re-expression led to partial EMT reversal and increased robustness in the HCT116 cells, permitting them to both form tumors and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlated inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a novel regulator of EMT.
The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition.
Cell line
View SamplesThe study aimed to identify role of OxyR during growth on different electron acceptors when E. coli are growing anaerobically.
Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR.
No sample metadata fields
View SamplesWe performed deep sequencing of small RNA from mouse insulinoma (MIN6) cells cultured in 25mM glucose. We then developed and implemented an in-house short-read mapping strategy to analyze isomiR diversity. Overall design: Profile of miRNA expression in MIN6 cells cultured in 25mM glucose.
Beta cell 5'-shifted isomiRs are candidate regulatory hubs in type 2 diabetes.
Cell line, Subject
View SamplesObesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the current study we investigated the concept of lipid-induced toxicity as the pathogenic link that could explain the trigger of this response. We addressed this question using isolated ATMs and adipocytes from genetic and diet-induced murine models of obesity. Through transcriptomic and lipidomic analysis, we created a model integrating transcript and lipid species networks simultaneously occurring in adipocytes and ATMs and their reversibility by thiazolidinedione treatment. We show that polarization of ATMs is associated with lipid accumulation and the consequent formation of foam celllike cells in adipose tissue. Our study reveals that early stages of adipose tissue expansion are characterized by M2-polarized ATMs and that progressive lipid accumulation within ATMs heralds the M1 polarization, a macrophage phenotype associated with severe obesity and insulin resistance. Furthermore, rosiglitazone treatment, which promotes redistribution of lipids toward adipocytes and extends the M2 ATM polarization state, prevents the lipid alterations associated with M1 ATM polarization. Our data indicate that the M1 ATM polarization in obesity might be a macrophage-specific manifestation of a more general lipotoxic pathogenic mechanism. This indicates that strategies to optimize fat deposition and repartitioning toward adipocytes might improve insulin sensitivity by preventing ATM lipotoxicity and M1 polarization.
Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice.
Specimen part
View SamplesOf the thousands of long non-coding RNAs expressed in embryonic stem (ES) cells, few have known roles and fewer have been functionally implicated in the regulation of self-renewal and pluripotency or reprogramming somatic cells to the pluripotent state. In ES cells, Cyrano is a stably expressed long intergenic non-coding RNA with no previously assigned role. We demonstrate that Cyrano contributes to ES cell maintenance, as its depletion results in loss of hallmarks of self-renewal. Delineation of Cyrano''s network through transcriptomics revealed widespread effects on signaling pathways and gene expression networks that contribute to ES cell maintenance. Cyrano shares unique sequence complementarity with the differentiation-associated microRNA, mir-7, and mir-7 overexpression reduces expression of a key self-renewal factor to a similar extent as Cyrano knockdown. This suggests that Cyrano functions to restrain the action of mir-7. Altogether, we provide a view into the multifaceted function of Cyrano in ES cell maintenance. Overall design: RNA-seq on mouse R1 embryonic stem (ES) cells with two biological replicates transfected with an shRNA knockdown of Cyrano and two biological replicates transfected with a non-targeting control vector.
Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells.
Specimen part, Cell line, Subject
View Samples