refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE79383
A microfluidics-based in vitro model of the gastrointestinal human-microbe interface
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We have developed a microfluidics-based in vitro model of the human gut allowing co-culture of human and microbial cells and subsequent multi-omic assessment of the effect of the co-culture on the host transcriptome.

Publication Title

A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP057697
Next Generation Sequencing Analysis of Wild Type and Rfx2-/- Testicular Transcriptomes [RNA-Seq P21]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: This study was carried out to determine the consequences of the Rfx2-/- genotype on spermatogenesis in the mouse Methods: RNA was extracted from decapsulated testes of 21 day old mixed background mice of either genotype. Deep sequencing was used to determine quantitative expression of the genomes from independent replicates of each genotype Results: RNA-Seq analysis identified some 105 genes that are down regulated at least 2-fold in Rfx2-/- testes, with ~50 being reduced at least 10-fold Conclusion: Spermatogenesis undergoes complete arrest just prior to the end of the round spermatid period of sperm development in mutant mice. Sequencing results showed that approximately 105 genes were downregulated 2 fold or more in the testes of mutant mice. Comparison of similar studies of targeted mutations in genes for other transcription factor demonstrate that Rfx2 has a large and nearly unique set of genes that depend on it directly or indirectly. A large number of downregulated genes are identified with cilia function. Overall design: Testicular mRNA profiles were determined by deep sequencing using testes from 5 independent wild type and 6 independent Rfx2-/- mice

Publication Title

RFX2 Is a Major Transcriptional Regulator of Spermiogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057696
Next Generation Sequencing Analysis of Wild Type and Rfx2-/- Testicular Transcriptomes [RNA-Seq P30]
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: This study was carried out to determine the consequences of the Rfx2-/- genotype on spermatogenesis in the mouse Methods: RNA was extracted from decapsulated testes of 29-30 day old mixed background mice of either genotype. Deep sequencing was used to determine quantitative expression of the genomes from independent replicates of each genotype Results: RNA-Seq analysis identified some 640 genes that are down regulated at least 2-fold in Rfx2-/- testes, with ~150 being reduced at least 10-fold Conclusion: Spermatogenesis undergoes complete arrest just prior to the end of the round spermatid period of sperm development in mutant mice. Sequencing results showed that approximately 640 genes were downregulated 2 fold or more in the testes of mutant mice. Comparison of similar studies of targeted mutations in genes for other transcription factor demonstrate that Rfx2 has a large and nearly unique set of genes that depend on it directly or indirectly. A large number of downregulated genes are identified with cilia function. Overall design: Testicular mRNA profiles were determined by deep sequencing using testes from 5 independent wild type and 4 independent Rfx2-/- mice

Publication Title

RFX2 Is a Major Transcriptional Regulator of Spermiogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48790
Expression data from GTF2i mutated ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Data present the expression analysis of different mouse ES cell line with altered expression of GTF2I.

Publication Title

TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21765
Expression data from Arabidopsis gapcp mutant treated with ABA
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Glycolytic Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde 3-phospate to 1,3-bisphosphoglycerate by coupling with the reduction of NAD+ to NADH. We generated mutants of the Arabidopsis plastidial GAPDH isoforms (At1g79530, At1g16300; GAPCp1, GAPCp2). gapcp double mutants (gapcp1 gapcp2) display a drastic phenotype of arrested root development and sterility.Complex interactions occurring between ABA and sugar signal transduction pathways have been shown, but the molecular mechanisms connecting both pathways are not well understood. Since we found drastic carbohydrate changes in gapcp1 gapcp2, we studied their response to ABA. by performing a microarray analysis comparing gapcp1 gapcp2 and wild type seedlings after a long term treatment with ABA.

Publication Title

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41521
Genome wide analysis of C57BL-6 mice infected with European strain (P1/7) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41520
Genome wide analysis of C57BL-6 mice infected with North-American strain (89-1591) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41522
Genome wide analysis of C57BL-6 mice infected with Chinese strain (SC84) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13046
Microarray analysis of Huh7 cells treated with IFNa2, OSM or IFNa2 combined with OSM
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

OSM increases the antiviral effect of IFN in Huh7 cells infected with hepatitis A virus (HAV) or HCV replicon and synergizes with IFN in the induction of antiviral genes

Publication Title

Oncostatin M enhances the antiviral effects of type I interferon and activates immunostimulatory functions in liver epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE142108
Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Actinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood.

Publication Title

Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact