The cornea continues to mature after birth to develop a fully functional, refractive and protective barrier tissue. Here we investigated the complex biological events underlying this process by profiling global genome-wide gene expression patterns of the immature postnatal day 10 and seven week-old adult mouse cornea. The lens and tendon were included in the study to increase the specificity of genes identified as up regulated in the corneal samples. Notable similarities in gene expression between the cornea and the tendon were in the mesenchymal extracellular matrix collagen (types I, III, V, VI) and proteoglycan (lumican, decorin and biglycan) genes. Expression similarities in the cornea and lens were limited to certain epithelial genes and the crystallins. Approximately 76 genes were over expressed in the cornea samples that showed basal expression levels in the lens and tendon. Thirty-two of these were novel with no known functions in the cornea. These include genes with a potential role in protection against oxidative stress (Dhcr24, Cdo1, Akr1b7, Prdx6), inflammation (Ltb4dh, Wdr1), ion-transport (Pdzk1ip1, Slc12a2, Slc25a17) and transcription (Zfp36l3, Pdzk1ip1). Direct comparison of the cornea of two ages showed selective up regulation of 50 and 12 genes in the P10 and adult cornea, respectively. Of the up regulated P10 genes several encode extracellular matrix collagens and proteoglycans that are stable components of the adult cornea and their high transcriptional activity at P10 indicate a period of active corneal growth and matrix deposition in the young cornea. Much less is known about the genes selectively over expressed in the adult cornea; some relate to immune response and innervations (Npy), and possibly to electron transport (Cyp24a1, Cyp2f2) and others of yet unknown functions in the cornea (Rgs10, Psmb8, Xlr4)). This study detected expression of genes with known functions in the cornea, providing additional validation of the microarray experiments. Importantly, it identified several novel genes whose functions have not been investigated in the cornea.
Differential gene expression patterns of the developing and adult mouse cornea compared to the lens and tendon.
No sample metadata fields
View SamplesIllumina expression microarray analysis of TCam-2, 2102EP, NCCIT, JAR, MPAF, ARZ and FS1 cells 8 and 16 h after 10 nanomolar romidepsin application. DMSO treated cells were used as controls. These data are part of the article 'A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment' (Nettersheim et al., 2016).
A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.
Cell line
View SamplesGene expression profiling of surgical biopsies from 74 breast cancer patients of different subtypes from Hamburg dataset.
Prognostic relevance of glycosylation-associated genes in breast cancer.
Sex, Specimen part
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View SamplesGene expression profiling was performed in ccRCC cells, which either express both HIF1alpha and HIF2alpha (either naturally or by virtue of induced expression of HIF1alpha) or express HIF2alpha alone (either naturally or by virtue of a HIF1alpha shRNA), to identify genes regulated by HIF1alpha in ccRCC cells.
Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene.
Specimen part, Cell line
View SamplesArabidopsis etiolated seedlings (4d old) Col-0 wild type compared to det3 mutants under various growth conditions
Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth Inhibition in Arabidopsis.
Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesGenome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature aging. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with aging. Here we show that the FoxO transcription factor DAF-16 is activated in response to DNA damage during development while the DNA damage responsiveness of DAF-16 declines with aging. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA damage induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16 mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.
DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage.
Treatment
View SamplesComparison of the transcriptional profiles of full-thickness murine skin harboring tissue resident memory T cells exposed to specific or control trigger Overall design: Expression profiling by high throughput sequencing
T cell memory. Skin-resident memory CD8⁺ T cells trigger a state of tissue-wide pathogen alert.
No sample metadata fields
View Samples