Using a mouse model overexpressing human SNCA and profiling the striatal transcriptome, we assessed gene-environment interactions to reveal perturbations in gene expression and their modulation through chronic unpredictable mild stress (CUMS) exposure. Overall design: Using a 2x2 factorial design, we cross-compared a line of transgenic mice overexpressing human SNCA with wildtype animals, and the effects of chronic unpredictable mild stress (CUMS) with standard housing conditions. Employing RNA-seq, we profiled gene expression in the striatum of 6-month-old female animals.
Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice.
Age, Specimen part, Cell line, Subject
View SamplesUsing a mouse model overexpressing human SNCA and profiling the striatal transcriptome, we assessed gene-environment interactions to reveal perturbations in gene expression and their modulation through chronic unpredictable mild stress (CUMS) exposure. Overall design: Using a 2x2 factorial design, we cross-compared a line of transgenic mice overexpressing human SNCA with wildtype animals, and the effects of chronic unpredictable mild stress (CUMS) with standard housing conditions. Employing RNA-seq, we profiled gene expression in the striatum of 6-month-old female animals.
Distinct Stress Response and Altered Striatal Transcriptome in Alpha-Synuclein Overexpressing Mice.
Age, Specimen part, Cell line, Subject
View SamplesWe examined effects of early life stress (ELS) and environmental enrichment (EE) during development on BACHD rat striatal gene expression using RNA sequencing Overall design: We used a 2×3 factorial design with two genotypes (wildtype, WT; transgene, TG) and three environmental conditions (standard environment, SE; enriched environment, EE; early life stress, ELS) to assess effects of environmental enrichment and early life stress on striatal gene expression of 2-month-old WT and BACHD rats
Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease.
No sample metadata fields
View SamplesUsing a mouse model overexpressing human SNCA and profiling the hippocampal transcriptome, we assessed gene-environment interactions to reveal perturbations in gene expression and their modulation through long-term enriched environment (EE) exposure. We observed that EE prevented perturbations of genes attributed to neuronal and glial cell types and linked to glutamate signaling, calcium homeostasis, inflammation, and related processes of SNCA biology. Cluster and promoter analyses suggested driver genes that specifically responded to the EE, and pointed to a pivotal role of Egr1 to have hierarchically activated other drivers. We suggest a model in which EE-induced driver genes prevent and counter-balance perturbations of SNCA overexpression, restoring a largely normalized gene expression profile and system state. Overall design: Using a 2x2 factorial design, we cross-compared a line of transgenic mice overexpressing human SNCA with wildtype animals, and the effects of a long-term EE with standard housing conditions. Employing RNA-seq, we profiled gene expression in the hippocampus of 12-month-old female animals.
Environmental Enrichment Prevents Transcriptional Disturbances Induced by Alpha-Synuclein Overexpression.
Age, Specimen part, Cell line, Subject
View SamplesCD25+ regulatory T cells develop in the thymus (nTregs), but may also be generated in the periphery upon stimulation of naive CD4 T cells under appropriate conditions (iTregs). The mechanisms that regulate the generation of peripheral iTregs are largely unknown.
Analysis of the transcriptional program of developing induced regulatory T cells.
Specimen part, Treatment, Subject, Time
View SamplesThe AF4/FMR2 proteins AFF1 and AFF4 act as a scaffold to assemble the Super Elongation Complex (SEC) that strongly activates transcriptional elongation of HIV-1 and cellular genes. Although they can dimerize, it is unclear whether the dimers exist and function within a SEC in vivo. Furthermore, it is unknown whether AFF1 and AFF4 function similarly in mediating SEC-dependent activation of diverse genes. Providing answers to these questions, our current study shows that AFF1 and AFF4 reside in separate SECs that display largely distinct gene target specificities. While the AFF1-SEC is more potent in supporting HIV-1 transactivation by the viral Tat protein, the AFF4-SEC is more important for HSP70 induction upon heat shock. The functional difference between AFF1 and AFF4 in Tat-transactivation has been traced to a single amino acid variation between the two proteins, which causes them to enhance the affinity of Tat for P-TEFb, a key SEC component, with different efficiency. Finally, genome-wide analysis confirms that the genes regulated by AFF1- and AFF4-SEC are largely non-overlapping and perform distinct functions. Thus, the SEC represents a family of related complexes that exist to increase the regulatory diversity and gene control options during transactivation of diverse cellular and viral genes. Overall design: RNA-seq in HeLa cells of wild-type and after RNAi of AFF1 or AFF4.
Gene target specificity of the Super Elongation Complex (SEC) family: how HIV-1 Tat employs selected SEC members to activate viral transcription.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View Samples