A fermentation strategies with phosphate feeding was applied to elongate transition inti phosphate limitation for an tryptophan overproducing E. coli strain
Phosphate limited fed-batch processes: impact on carbon usage and energy metabolism in Escherichia coli.
No sample metadata fields
View SamplesNodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is an indolent lymphoma, but can transform into diffuse large B cell lymphoma (DLBCL), showing a more aggressive clinical behavior. Little is known about these cases on the molecular level. Therefore, the aim of the present study was to characterize DLBCL transformed from NLPHL (LP-DLBCL) by gene expression profiling (GEP). GEP revealed an inflammatory signature pinpointing to a specific host response. In a coculture model resembling this host response, DEV tumor cells showed an impaired growth behavior. Mechanisms involved in the reduced tumor cell proliferation included a downregulation of MYC and its target genes. Lack of MYC expression was also confirmed in 12/16 LP-DLBCL by immunohistochemistry. Furthermore, CD274/PD-L1 was upregulated in tumor cells after coculture with T cells or monocytes and its expression was validated in 12/19 cases of LP-DLBCL. Thereby, our data provide new insights into the pathogenesis of LP-DLBCL and a concrete explanation of the relatively low tumor cell content. Moreover, our results suggest that treatment of these patients with checkpoint inhibitors may enhance an already ongoing host response in these patients.
A strong host response and lack of MYC expression are characteristic for diffuse large B cell lymphoma transformed from nodular lymphocyte predominant Hodgkin lymphoma.
Specimen part
View SamplesNodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is an indolent lymphoma, but can transform into diffuse large B cell lymphoma (DLBCL), showing a more aggressive clinical behavior. Little is known about these cases on the molecular level. Therefore, the aim of the present study was to characterize DLBCL transformed from NLPHL
A strong host response and lack of MYC expression are characteristic for diffuse large B cell lymphoma transformed from nodular lymphocyte predominant Hodgkin lymphoma.
Specimen part, Cell line
View SamplesThis experiment was designed to study oncogene-induced senescence (OIS). To this end we generated a series of cell lines derived from normal human diploid fibroblasts IMR90 forced to express the catalytic subunit of telomerase (hTERT). This cells were then subjected to further manipulation by orderly introducing defined genetic elements by retroviral transduction. The first cell line generated was ITV, which was obtained from the original cell line (IMR90 with hTERT) after introducing an empty vector. Subsequently, we introduced Mek:ER, which is a switchable version of the Mek kinase, a relevant downstream effector of Ras signaling during Ras-induced senescence, to generate ITM cells. We further modified this cell line by introducing SV40 small-t antigen (ST), papillomavirus oncoproteins E6 and E7 (E6/E7) or the combination of both (E6/E7 and ST). In this manner, we obtained ITMST, ITME6E7 and ITME6E7ST respectively.
Tumour biology: senescence in premalignant tumours.
No sample metadata fields
View SamplesGlioblastoma multiforme (GBM), the most common and aggressive primary brain tumor in adults, can be divided into several molecular subtypes including proneural GBM. Most clinical strategies aimed at directly targeting glioma cells in these tumors have failed. A promising alternative is to target stromal cells in the brain microenvironment, such as tumor-associated microglia and macrophages (TAMs). Macrophages are dependent upon colony stimulating factor (CSF)-1 for differentiation and survival; therefore, we used an inhibitor of its receptor, CSF-1R, to target macrophages in a mouse proneural GBM model. CSF-1R inhibition dramatically increased survival in mice and regressed established GBMs. Tumor cell apoptosis was significantly increased, and proliferation and tumor grade markedly decreased. Surprisingly, TAMs were not depleted in tumors treated with the CSF-1R inhibitor. Instead, analysis of gene expression in TAMs isolated from treated tumors revealed a decrease in alternatively activated/ M2 macrophage markers, consistent with impaired tumor-promoting functions. These gene signatures were also associated with better survival specifically in the proneural subtype of patient gliomas. Collectively, these results establish macrophages as valid therapeutic targets in proneural gliomas, and highlight the clinical potential for CSF-1R inhibitors in GBM.
CSF-1R inhibition alters macrophage polarization and blocks glioma progression.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesBiofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracelluar (e)DNA, with eDNA being required for the formation and integrity of biofilms. Here we demonstrate that the spatial and temporal release of eDNA is regulated by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. The expression of bfmR coincided with localized cell death and DNA release, with high eDNA concentrations localized to the outer part of microcolonies in the form of a ring and as a cap on small clusters. Additionally, eDNA release and cell lysis increased significantly following bfmR inactivation. Genome-wide transcriptional profiling indicated that bfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. In order to determine which of these genes were directly regulated by BfmR, we utilized chromatin immunoprecipitation (ChIP) analysis to identify the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development, increased cell death and bacteriophage release, a phenotype comparable to bfmR. Expression of phdA in bfmR biofilms restored eDNA release, cell lysis, release of bacteriophages, and biofilm formation to wild type levels. Moreover, overexpression of phdA rendered P. aeruginosa resistant to lysis mediated by superinfective bacteriophage Pf4 which was only detected in biofilms. The expression of bfmR was stimulated by conditions resulting in membrane perturbation and cell lysis. Thus, we propose that BfmR regulates biofilm development by controlling bacteriophage-mediated lysis and thus, cell death and eDNA release, via PhdA.
The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.
No sample metadata fields
View Samples