Wild-type and exo mutant (SALK_098602) were grown in parallel in three independent experiments in a greenhouse. 3 x 2 profiles were established.
The extracellular EXO protein mediates cell expansion in Arabidopsis leaves.
Age, Specimen part, Time
View SamplesFolic acid supplements prior to and during gestation are recommended and necessary to prevent neural tube defects in developing embryos. But there are also studies suggesting possible adverse effects of high-dose folic acid supplementation. Here, we address whether maternal dietary folic acid supplementation at 40 mg/kg chow (FD), restricted to a period prior to conception, affects gene expression in the offspring generation. Overall design: Total RNA extracted from hippocampi of 6 control (CD) F1 mice and 5 FD F1 mice at the age of 14 weeks.
High-dose maternal folic acid supplementation before conception impairs reversal learning in offspring mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesRPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes. To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates. Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals.
Evolution of lysine acetylation in the RNA polymerase II C-terminal domain.
Cell line
View SamplesTumor progression is associated with an immunosuppressive microenvironment that consists of several elements, such as regulatory T cells, type 2 macrophages and myeloid-derived suppressor cells. Here, we identify for the first time a BDCA1+CD14+ population of immunosuppressive cells that resides both in the blood and tumor of melanoma patients. We demonstrated that the presence of these cells in dendritic cell (DC)-based anti-tumor vaccines significantly suppresses CD4+ T cells in an antigen-specific manner. In an attempt to reveal the mechanism of this suppressive activity, we noticed that BDCA1+CD14+ cells express elevated levels of the check-point molecule PD-L1, which thereby hinders T cell proliferation. Importantly, although this suppressive BDCA1+CD14+ population expresses markers of both BDCA1+ DCs and monocytes, functional, transcriptome and proteome analyses clearly revealed that they comprise a unique population of cells that is exploited by tumors to evade immunity. Thus, targeting these cells may improve the efficacy of cancer immunotherapy. Overall design: mRNA profiles of BDCA1+ DCs, BDCA1+CD14+ cells and monocytes, isolated from 3 healthy volunteers, were generated by deep RNA sequencing using HiSeq 2000 System (TruSeq SBS KIT-HS V3,Illumina)
Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines.
No sample metadata fields
View SamplesThe purpose of this study was to analyze the transcriptional effects induced by glatiramer acetate treatment (GA; Copaxone, 20 mg injected subcutaneously once daily) in blood monocytes of patients with relapsing-remitting form of multiple sclerosis (MS). By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of monocytes from 8 MS patients within the first two months of GA administration.
Glatiramer acetate treatment effects on gene expression in monocytes of multiple sclerosis patients.
Sex, Disease
View SamplesHepatocellular carcinoma (HCC) represents a major health problem as it afflicts an increasing number of patients worldwide. Albeit most of the risk factors for HCC are known, this is a deadly syndrome with a life expectancy at the time of diagnosis of less than 1 year. Definition of the molecular principles governing the neoplastic transformation of the liver is an urgent need to facilitate the clinical management of patients, based on innovative methods to detect the disease in its early stages and on more efficient therapies. In the present study we have combined the analysis of a murine model and human samples of HCC to identify genes differentially expressed early in the process of hepatocarcinogenesis, using a microarray based approach. Expression of 190 genes was impaired in murine HCC from which 65 were further validated by low-density array RT PCR. The expression of the best 45 genes was then investigated in human samples resulting in 18 genes which expression was significantly modified in HCC. Among them, JUN, methionine adenosyltransferase 1A and 2A, phosphoglucomutase 1, and acyl CoA dehydrogenase short branched chain indicate defective cell proliferation as well as one carbon pathway, glucose and fatty acid metabolism, both in HCC and cirrhotic liver, a well known preneoplastic condition. These alterations were further confirmed in public transcriptomic datasets from other authors. In addition, vasodilator stimulated phosphoprotein, an actin-associated protein involved in cytoskeleton remodelling, was also found to be increased in the liver and serum of cirrhotic and HCC patients. In addition to revealing the impairment of central metabolic pathways for liver homeostasis, further studies may probe the potential value of the reported genes for the early detection of HCC.
A signature of six genes highlights defects on cell growth and specific metabolic pathways in murine and human hepatocellular carcinoma.
Specimen part
View SamplesFor Staphylococcus aureus it was shown previously that aminocoumarinecoumarin antibiotics such as novobiocin lead to immediate down-regulation of recA expression and thereby inhibition of the SOS response, the mutation frequency and the recombination capacity. Aminocoumarinecoumarin function by inhibition of the ATPase activity of the gyrase subunit B. Here we analysed the global impact of the DNA relaxing agent novobiocin on gene expression in S. aureus. By use of a novobiocin resistant mutant, it became evident that the change in recA expression is due to gyrase inhibition. Microarray analysis and Northern blot hybridization revealed that the expression of a distinct set of genes is increased (e.g. recF-gyrB-gyrA, rib operon and ure operon )), or decreased (e.g. arlRS, recA, lukA, hlgC, fnbA) by novobiocin. The two-component ArlRS system was previously found to decrease the supercoiling level in S. aureus. Thus, down-regulation of arlRS might in part compensate for the relaxing effect of novobiocin. Novobiocin resulted in down-regulation of several of arlRS repressed target genes in an arl mutant. Global analysis and gene mapping of supercoiling sensitive genes did not give indications that they are clustered in the genome. Promoter fusion assays confirmed that responsiveness of a given gene is intrinsic to the promoter region but independent of the chromosomal location. The results indicate that molecular property of the spacers of a given promoter dictatesa given promoter rather than chromosomal topology dictates the responsiveness towards changes in supercoiling rather than chromosomal topology.
Altering gene expression by aminocoumarins: the role of DNA supercoiling in Staphylococcus aureus.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.
Sex, Disease
View SamplesThe purpose of this study was to investigate the expression dynamics of mRNAs and microRNAs in response to subcutaneous IFN-beta-1b treatment (Betaferon, 250 g every other day) in patients with clinically isolated syndrome (CIS) suggestive of multiple sclerosis (MS) or relapsing-remitting type of the disease (RRMS).
MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients.
Sex, Disease
View SamplesStatins are widely used cholesterol-lowering drugs that inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis. In some cases, however, these drugs may cause a number of toxic side effects in hepatocytes and skeletal muscle tissue. Currently, the specific molecular mechanisms that cause these adverse effects are not sufficiently understood. In this work, genome-wide RNA expression changes in primary human hepatocytes of six individuals were measured at five time points upon atorvastatin treatment. A novel systems-level analysis workflow was applied to reconstruct regulatory mechanisms based on these drug-response data and available knowledge about transcription factor binding specificities, protein-protein interactions and protein-drug interactions. Several previously unknown transcription factors, regulatory cofactors and signaling molecules were found to be involved in atorvastatin-responsive gene expression. Some novel relationships, e.g., the regulatory influence of nuclear receptor NR2C2 on CYP3A4, were successfully validated in wet-lab experiments.
Inferring statin-induced gene regulatory relationships in primary human hepatocytes.
Specimen part, Treatment, Subject
View Samples